会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Development of a Protein-Based Biotherapeutic Agent That Penetrates Cell-Membrane and Induces Anti-Tumor Effect in Solid Tumors - Improved Cell-Permeable Suppressor of Cytokine Signaling (iCP-SOCS3) Proteins, Polynucleotides Encoding the Same, and Anti-Tumor Compositions Comprising the Same
    • US20160060314A1
    • 2016-03-03
    • US14838304
    • 2015-08-27
    • DAEWOONG JOCellivery Therapeutics, Inc.
    • Daewoong JOYoung Sil CHOISeul Mee SHINJu Hyun NAM
    • C07K14/47C07K7/08
    • In principle, protein-based biotherapeutics offers a way to control biochemical processes in living cells under non-steady state conditions and with fewer off-target effects than conventional small molecule therapeutics. However, systemic protein delivery in vivo has been proven difficult due to poor tissue penetration and rapid clearance. Protein transduction exploits the ability of some cell-penetrating peptide (CPP) sequences to enhance the uptake of proteins and other macromolecules by mammalian cells. Previously developed hydrophobic CPPs, named membrane translocating sequence (MTS), membrane translocating motif (MTM) and macromolecule transduction domain (MTD), are able to deliver biologically active proteins into a variety of cells and tissues. Various cargo proteins fused to these CPPs have been used to test the functional and/or therapeutic efficacy of protein transduction. The recombinant proteins consisting of suppressor of cytokine signaling 3 (CP-SOCS3) protein fused to the fibroblast growth factor (FGF) 4-derived MTM were developed to inhibit inflammation and apoptosis. However, CP-SOCS3 fusion proteins expressed in bacteria cells were hard to be purified in soluble form. To address these critical limitations, CPP sequences called advanced MTDs (aMTDs) have been developed in this art. This is accomplished by (i) analyzing previous developed hydrophobic CPP sequences to identify specific critical factors (CFs) that affect intracellular delivery potential and (ii) constructing artificial aMTD sequences satisfied for each critical factor. In addition, solubilization domains (SDs) have been incorporated into the aMTD-fused SOCS3 recombinant proteins to enhance solubility with corresponding increases in protein yield and cell-/tissue-permeability. These recombinant SOCS3 proteins fused to aMTD/SD having much higher solubility/yield and cell-/tissue-permeability have been named as improved cell-permeable SOCS3 (iCP-SOCS3) proteins. Previously developed CP-SOCS3 proteins fused to MTM were only tested or used as anti-inflammatory agents to treat acute liver injury. In the present art, iCP-SOCS3 proteins have been tested for use as anti-cancer agents in the treatment of various cancers likes gastric, colorectal and breast cancer, and glioblastoma. Since SOCS3 is frequently deleted in and loss of SOCS3 in tumors promotes resistance to apoptosis and proliferation, we reasoned that iCP-SOCS3 could be used as a protein-based intracellular replacement therapy for the treatment of various cancers. The results demonstrated in this art support the reasoning: treatment of cancer cells with iCP-SOCS3 results in reduced cancer cell viability, enhanced apoptosis of solid tumors including gastric, colorectal and breast cancer, and glioblastoma and loss of cell migration/invasion potential. Furthermore, iCP-SOCS3 inhibits the growth of gastric and colorectal tumors in a subcutaneous xenografts model. In the present invention with iCP-SOCS3, where SOCS3 is fused to an empirically determined combination of newly developed aMTD and customized SD, macromolecule intracellular transduction technology (MITT) enabled by the advanced MTDs may provide novel protein therapy against various tumors such as gastric cancer, colorectal cancer, glioblastoma, and breast cancer.
    • 2. 发明申请
    • Development of Protein-Based Biotherapeutics That Penetrates Cell-Membrane and Induces Anti-Hepatocellular Carcinoma Effect - Improved Cell-Permeable Suppressor of Cytokine Signaling (iCP-SOCS3) Proteins, Polynucleotides Encoding the Same, and Anti-Hepatocellular Carcinoma Compositions Comprising the Same
    • US20160060310A1
    • 2016-03-03
    • US14838260
    • 2015-08-27
    • DAEWOONG JOCellivery Therapeutics, Inc.
    • Daewoong JOYoung Sil CHOIYoun Seo HWANGKyeong Soo KIM
    • C07K14/47C07K7/08
    • Protein transduction exploits the ability of some cell-penetrating peptide (CPP) sequences to enhance the uptake of proteins and other macromolecules by mammalian cells. Previously developed hydrophobic CPPs, named membrane translocating sequence (MTS), membrane translocating motif (MTM) and macromolecule transduction domain (MTD), are able to deliver biologically active proteins into a variety of cells and tissues. Various cargo proteins fused to these CPPs have been used to test the functional and/or therapeutic efficacy of protein transduction. For example, recombinant proteins consisting of suppressor of cytokine signaling 3 protein (CP-SOCS3) fused to the fibroblast growth factor (FGF) 4-derived MTM were developed to inhibit inflammation and apoptosis. However, CP-SOCS3 fusion proteins expressed in bacteria were hard to purify in soluble form. To address these critical limitations, CPP sequences called advanced MTDs (aMTD) have been developed in this art. This is accomplished by (i) analyzing previous developed hydrophobic CPP sequences to identify specific critical factors (CFs) that affect intracellular delivery potential and (ii) constructing artificial aMTD sequences satisfied for each critical factor. In addition, solubilization domains (SDs) have been incorporated into the aMTD-fused SOCS3 recombinant proteins to enhance solubility with corresponding increases in protein yield and cell-/tissue-permeability. These recombinant SOCS3 proteins fused to aMTD/SD having much higher solubility/yield and cell-/tissue-permeability have been named as improved cell-permeable SOCS3 (iCP-SOCS3) proteins. Previously developed CP-SOCS3 proteins fused to MTM were only tested or used as anti-inflammatory agents to treat acute liver injury. In the present art, iCP-SOCS3 proteins have been tested for use as anti-cancer agents in the treatment of hepatocellular carcinoma. Since SOCS3 is frequently deleted in and loss of SOCS3 in hepatocytes promotes resistance to apoptosis and proliferation, we reasoned that iCP-SOCS3 could be used as a protein-based intracellular replacement therapy for the treatment of hepatocellular carcinoma. The results support this reasoning: treatment of hepatocellular carcinoma cells with iCP-SOCS3 results in reduced cancer cell viability, enhanced apoptosis and loss of cell migration/invasion potential. Furthermore, iCP-SOCS3 inhibits the growth of hepatocellular carcinoma in a subcutaneous xenografts model. In the present invention with iCP-SOCS3 fused to an empirically determined combination of newly developed aMTD and customized SD, macromolecule intracellular transduction technology (MITT) enabled by the advanced MTD may provide novel protein therapy against hepatocellular carcinoma.
    • 3. 发明申请
    • Development of Protein-Based Biotherapeutics That Penetrates Cell-Membrane and Induces Anti-Pancreatic Cancer Effect - Improved Cell-Permeable Suppressor of Cytokine Signaling (iCP-SOCS3) Proteins, Polynucleotides Encoding the Same, and Anti-Pancreatic Cancer Compositions Comprising the Same
    • US20160060312A1
    • 2016-03-03
    • US14838288
    • 2015-08-27
    • Daewoong JOCellivery Therapeutics, Inc.
    • Daewoong JOYoung Sil CHOIEun Kyung LEENa Ra YOON
    • C07K14/47C07K7/08
    • In principle, protein-based biotherapeutics offers a way to control biochemical processes in living cells under non-steady state conditions and with fewer off-target effects than conventional small molecule therapeutics. However, systemic protein delivery in vivo has been proven difficult due to poor tissue penetration and rapid clearance. Protein transduction exploits the ability of some cell-penetrating peptide (CPP) sequences to enhance the uptake of proteins and other macromolecules by mammalian cells. Previously developed hydrophobic CPPs, named membrane translocating sequence (MTS), membrane translocating motif (MTM) and macromolecule transduction domain (MTD), are able to deliver biologically active proteins into a variety of cells and tissues. Various cargo proteins fused to these CPPs have been used to test the functional and/or therapeutic efficacy of protein transduction. The recombinant proteins consisting of suppressor of cytokine signaling 3 (CP-SOCS3) protein fused to the fibroblast growth factor (FGF) 4-derived MTM were developed to inhibit inflammation and apoptosis. However, CP-SOCS3 fusion proteins expressed in bacteria cells were hard to be purified in soluble form. To address these critical limitations, CPP sequences called advanced MTDs (aMTDs) have been developed in this art. This is accomplished by (i) analyzing previous developed hydrophobic CPP sequences to identify specific critical factors (CFs) that affect intracellular delivery potential and (ii) constructing artificial aMTD sequences that satisfy each critical factor. In addition, solubilization domains (SDs) have been incorporated into the aMTD-fused SOCS3 recombinant proteins to enhance solubility with corresponding increases in protein yield and cell-/tissue-permeability. These recombinant SOCS3 proteins fused to aMTD/SD having much higher solubility/yield and cell-/tissue-permeability have been named as improved cell-permeable SOCS3 (iCP-SOCS3) proteins. Previously developed CP-SOCS3 proteins fused to MTM were only tested or used as anti-inflammatory agents to treat acute liver injury. In the present art, iCP-SOCS3 proteins have been tested for use as anti-cancer agents in the treatment of pancreatic cancer. Since SOCS3 is frequently deleted in cancer cells and loss of SOCS3 promotes resistance to apoptosis and proliferation, we reasoned that iCP-SOCS3 could be used as a protein-based intracellular replacement therapy for the treatment of pancreatic cancer. The results demonstrated in this art support this reasoning: treatment of pancreatic cancer cells with iCP-SOCS3 results in reduced cancer cell viability, enhanced apoptosis and loss of cell migration/invasion potentials. Furthermore, iCP-SOCS3 inhibits the growth of pancreatic cancer in a subcutaneous xenografts model. In the present invention with iCP-SOCS3, where SOCS3 is fused to an empirically determined combination of newly developed aMTD and customized SD, macromolecule intracellular transduction technology (MITT) enabled by the advanced MTDs may provide novel protein therapy against pancreatic cancer.
    • 4. 发明申请
    • Development of Protein-Based Biotherapeutics That Penetrates Cell-Membrane and Induces Anti-Lung Cancer Effect - Improved Cell-Permeable Suppressor of Cytokine Signaling (iCP-SOCS3) Proteins, Polynucleotides Encoding the Same, and Anti-Lung Cancer Compositions Comprising the Same
    • US20160060311A1
    • 2016-03-03
    • US14838280
    • 2015-08-27
    • Daewoong JOCellivery Therapeutics, Inc.
    • Daewoong JOYoung Sil CHOIKuy Sook LEEMin Seok JANG
    • C07K14/47C07K7/08
    • In principle, protein-based biotherapeutics offers a way to control biochemical processes in living cells under non-steady state conditions and with fewer off-target effects than conventional small molecule therapeutics. However, systemic protein delivery in vivo has been proven difficult due to poor tissue penetration and rapid clearance. Protein transduction exploits the ability of some cell-penetrating peptide (CPP) sequences to enhance the uptake of proteins and other macromolecules by mammalian cells. Previously developed hydrophobic CPPs, named membrane translocating sequence (MTS), membrane translocating motif (MTM) and macromolecule transduction domain (MTD), are able to deliver biologically active proteins into a variety of cells and tissues. Various cargo proteins fused to these CPPs have been used to test the functional and/or therapeutic efficacy of protein transduction. Previously, recombinant proteins consisting of suppressor of cytokine signaling 3 (CP-SOCS3) protein fused to the fibroblast growth factor (FGF) 4-derived MTM were developed to inhibit inflammation and apoptosis. However, CP-SOCS3 fusion proteins expressed in bacteria cells were hard to be purified in soluble form. To address these critical limitations, CPP sequences called advanced MTDs (aMTDs) have been developed in this art. The development of this art has been accomplished by (i) analyzing previous developed hydrophobic CPP sequences to identify specific critical factors (CFs) that affect intracellular delivery potential and (ii) constructing artificial aMTD sequences that satisfy for each critical factor. In addition, solubilization domains (SDs) have been incorporated into the aMTD-fused SOCS3 recombinant proteins to enhance solubility with corresponding increases in protein yield and cell-/tissue-permeability. These recombinant SOCS3 proteins fused to aMTD/SD having much higher solubility/yield and cell-/tissue-permeability have been named as improved cell-permeable SOCS3 (iCP-SOCS3) proteins. Previously developed CP-SOCS3 proteins fused to MTM were only tested or used as anti-inflammatory agents to treat acute liver injury. In the present art, iCP-SOCS3 proteins have been tested for use as anti-cancer agents in the treatment of neoplasia in lung. Since SOCS3 is frequently deleted in cancer cells and loss of SOCS3 promotes resistance to apoptosis and proliferation, we reasoned that iCP-SOCS3 could be used as a protein-based intracellular replacement therapy for the treatment of lung cancer. The results demonstrated in this art support this reasoning: treatment of human non-small cell lung carcinoma cells with iCP-SOCS3 results in reduced cancer cell viability, enhanced apoptosis. Furthermore, iCP-SOCS3 inhibited migration/invasion of lung cancer cells. In the present invention with iCP-SOCS3, where SOCS3 is fused to an empirically determined combination of newly developed aMTD and customized SD, macromolecule intracellular transduction technology (MITT) enabled by the advanced MTDs may provide novel protein therapy against lung cancer.
    • 5. 发明授权
    • Cell permeable p53 recombinant protein, polynucleotide encoding the same, and anti-cancer composition containing the same as active ingredient
    • 细胞可渗透的p53重组蛋白,编码它们的多核苷酸以及含有与活性成分相同的抗癌组合物
    • US08470971B2
    • 2013-06-25
    • US13132202
    • 2009-12-02
    • Daewoong JoJung-Hee Lim
    • Daewoong JoJung-Hee Lim
    • C07K7/00
    • C07K14/4746A61K38/00C07K2319/10
    • Disclosed are a cell-permeable p53 recombinant protein in which a macromolecule transduction domain (MTD) is fused to the tumor suppressor p53, a polynucleotide encoding the same, a recombinant expression vector for producing the same, and a pharmaceutical composition of the treatment of cancer, comprising the same. Having high cell permeability, the p53 recombinant protein is effectively transduced into cells so that the tumor suppressor p53 can be translocated into cell nuclei. Within nuclei, p53 inhibits the formation of cyclin-CDK complexes to halt the cell cycle, thus suppressing excessive cell proliferation and inducing apoptosis of tumor cells. Therefore, the p53 recombinant protein can be useful as an anticancer agent in the treatment of various cancers.
    • 公开了一种细胞可渗透的p53重组蛋白,其中大分子转导结构域(MTD)与肿瘤抑制基因p53融合,编码该多核苷酸的多核苷酸,用于制备该多核苷酸的重组表达载体,以及治疗癌症的药物组合物 ,包括它们。 具有高细胞通透性,p53重组蛋白有效转导入细胞,使肿瘤抑制基因p53能够转位入细胞核。 在核内,p53抑制细胞周期蛋白CDK复合物的形成,以阻止细胞周期,从而抑制过量的细胞增殖并诱导肿瘤细胞凋亡。 因此,p53重组蛋白可用作治疗各种癌症的抗癌剂。