会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Method for Three Dimensional (3D) Lattice Radiotherapy
    • 三维(3D)晶格放射治疗方法
    • US20100320402A1
    • 2010-12-23
    • US12819212
    • 2010-06-20
    • Xiaodong WuMansoor M. AhmedAlan Pollack
    • Xiaodong WuMansoor M. AhmedAlan Pollack
    • A61N5/10
    • A61N5/1031
    • A method for high-dose Grid radiotherapy utilizing a three-dimensional (3D) dose lattice formation is described herein. The 3D dose lattice can be achieved by, but not limited to, three technical approaches: 1) non-coplanar focused beams; 2) multileaf collimator (MLC)-based intensity modulated radiation therapy (IMRT) or aperture-modulated arc; and 3) heavy charged particle beam. The configuration of a 3D dose lattice is comprised of the number, location, and dose of dose vertices. The optimal configuration of a 3D dose lattice can be achieved by manual calculations or by automating the calculations for a generic algorithm. The objective of the optimization algorithm is to satisfy three conditions via iteration until they reach their global minimum. With 3D dose lattice, high doses of radiation are concentrated at each lattice vertex within a tumor with drastically lower doses between vertices (peak-to-valley effect), leaving tissue outside of the tumor volume minimally exposed.
    • 本文描述了利用三维(3D)剂量格子形成的大剂量网格放射治疗方法。 3D剂量网格可以通过但不限于三种技术方法来实现:1)非共面聚焦束; 2)基于多叶准直器(MLC)的强度调制放射治疗(IMRT)或孔径调制电弧; 和3)重带电粒子束。 3D剂量网格的配置由剂量顶点的数量,位置和剂量组成。 3D剂量网格的最佳配置可以通过手动计算或通过自动化一般算法的计算来实现。 优化算法的目的是通过迭代满足三个条件,直到达到其全局最小值。 使用3D剂量网格,高剂量的辐射集中在肿瘤内的每个晶格顶点,顶点之间具有非常低的剂量(峰 - 谷效应),使组织在肿瘤体外的最低限度暴露。
    • 2. 发明授权
    • Method for three dimensional (3D) lattice radiotherapy
    • 三维(3D)晶格放射治疗方法
    • US08395131B2
    • 2013-03-12
    • US12819212
    • 2010-06-20
    • Xiaodong WuMansoor M. AhmedAlan Pollack
    • Xiaodong WuMansoor M. AhmedAlan Pollack
    • A61N5/10
    • A61N5/1031
    • A method for high-dose Grid radiotherapy utilizing a three-dimensional (3D) dose lattice formation is described herein. The 3D dose lattice can be achieved by, but not limited to, three technical approaches: 1) non-coplanar focused beams; 2) multileaf collimator (MLC)-based intensity modulated radiation therapy (IMRT) or aperture-modulated arc; and 3) heavy charged particle beam. The configuration of a 3D dose lattice is comprised of the number, location, and dose of dose vertices. The optimal configuration of a 3D dose lattice can be achieved by manual calculations or by automating the calculations for a generic algorithm. The objective of the optimization algorithm is to satisfy three conditions via iteration until they reach their global minimum. With 3D dose lattice, high doses of radiation are concentrated at each lattice vertex within a tumor with drastically lower doses between vertices (peak-to-valley effect), leaving tissue outside of the tumor volume minimally exposed.
    • 本文描述了利用三维(3D)剂量格子形成的大剂量网格放射治疗方法。 3D剂量网格可以通过但不限于三种技术方法来实现:1)非共面聚焦束; 2)基于多叶准直器(MLC)的强度调制放射治疗(IMRT)或孔径调制电弧; 和3)重带电粒子束。 3D剂量网格的配置由剂量顶点的数量,位置和剂量组成。 3D剂量网格的最佳配置可以通过手动计算或通过自动化一般算法的计算来实现。 优化算法的目的是通过迭代满足三个条件,直到达到其全局最小值。 使用3D剂量网格,高剂量的辐射集中在肿瘤内的每个晶格顶点,顶点之间具有非常低的剂量(峰 - 谷效应),使组织在肿瘤体外的最低限度暴露。
    • 3. 发明申请
    • Method for Three Dimensional (3D) Lattice Radiotherapy
    • 三维(3D)晶格放射治疗方法
    • US20160256708A9
    • 2016-09-08
    • US13738099
    • 2013-01-10
    • Xiaodong WuMansoor M. AhmedAlan Pollack
    • Xiaodong WuMansoor M. AhmedAlan Pollack
    • A61N5/10
    • A61N5/1031
    • A method for high-dose Grid radiotherapy utilizing a three-dimensional (3D) dose lattice formation is described herein. The 3D dose lattice can be achieved by, but not limited to, three technical approaches: 1) non-coplanar focused beams; 2) multileaf collimator (MLC)-based intensity modulated radiation therapy (IMRT) or aperture-modulated arc; and 3) heavy charged particle beam. The configuration of a 3D dose lattice is comprised of the number, location, and dose of dose vertices. The optimal configuration of a 3D dose lattice can be achieved by manual calculations or by automating the calculations for a generic algorithm. The objective of the optimization algorithm is to satisfy three conditions via iteration until they reach their global minimum. With 3D dose lattice, high doses of radiation are concentrated at each lattice vertex within a tumor with drastically lower doses between vertices (peak-to-valley effect), leaving tissue outside of the tumor volume minimally exposed.
    • 本文描述了利用三维(3D)剂量格子形成的大剂量网格放射治疗方法。 3D剂量网格可以通过但不限于三种技术方法来实现:1)非共面聚焦束; 2)基于多叶准直器(MLC)的强度调制放射治疗(IMRT)或孔径调制电弧; 和3)重带电粒子束。 3D剂量网格的配置由剂量顶点的数量,位置和剂量组成。 3D剂量网格的最佳配置可以通过手动计算或通过自动化一般算法的计算来实现。 优化算法的目的是通过迭代满足三个条件,直到达到其全局最小值。 使用3D剂量网格,高剂量的辐射集中在肿瘤内的每个晶格顶点,顶点之间具有非常低的剂量(峰 - 谷效应),使组织在肿瘤体外的最低限度暴露。
    • 4. 发明申请
    • Method for Three Dimensional (3D) Lattice Radiotherapy
    • 三维(3D)晶格放射治疗方法
    • US20140194667A1
    • 2014-07-10
    • US13738099
    • 2013-01-10
    • Xiaodong WuMansoor M. AhmedAlan Pollack
    • Xiaodong WuMansoor M. AhmedAlan Pollack
    • A61N5/10
    • A61N5/1031
    • A method for high-dose Grid radiotherapy utilizing a three-dimensional (3D) dose lattice formation is described herein. The 3D dose lattice can be achieved by, but not limited to, three technical approaches: 1) non-coplanar focused beams; 2) multileaf collimator (MLC)-based intensity modulated radiation therapy (IMRT) or aperture-modulated arc; and 3) heavy charged particle beam. The configuration of a 3D dose lattice is comprised of the number, location, and dose of dose vertices. The optimal configuration of a 3D dose lattice can be achieved by manual calculations or by automating the calculations for a generic algorithm. The objective of the optimization algorithm is to satisfy three conditions via iteration until they reach their global minimum. With 3D dose lattice, high doses of radiation are concentrated at each lattice vertex within a tumor with drastically lower doses between vertices (peak-to-valley effect), leaving tissue outside of the tumor volume minimally exposed.
    • 本文描述了利用三维(3D)剂量格子形成的大剂量网格放射治疗方法。 3D剂量网格可以通过但不限于三种技术方法来实现:1)非共面聚焦束; 2)基于多叶准直器(MLC)的强度调制放射治疗(IMRT)或孔径调制电弧; 和3)重带电粒子束。 3D剂量网格的配置由剂量顶点的数量,位置和剂量组成。 3D剂量网格的最佳配置可以通过手动计算或通过自动化一般算法的计算来实现。 优化算法的目的是通过迭代满足三个条件,直到达到其全局最小值。 使用3D剂量网格,高剂量的辐射集中在肿瘤内的每个晶格顶点,顶点之间具有非常低的剂量(峰 - 谷效应),使组织在肿瘤体外的最低限度暴露。
    • 5. 发明授权
    • Growth and operation of a step-graded ternary III-V heterojunction p-n
diode photodetector
    • 渐变三元III-V异质结p-n二极管光电探测器的生长和运行
    • US3995303A
    • 1976-11-30
    • US583964
    • 1975-06-05
    • Robert Edward NahoryThomas Perine PearsallMartin Alan Pollack
    • Robert Edward NahoryThomas Perine PearsallMartin Alan Pollack
    • H01L31/107H01L31/109H01L27/14
    • H01L31/109Y10S148/005
    • In an infrared photodetection apparatus a photodetector diode is used which comprises a heterojunction of two epitaxial layers of differing compositions of a ternary III-V semiconductive alloy, such that the outer layer will serve as a radiation-admitting window as well as physical protection for the underlying absorbing layer in the so called direct photodetector diode configuration. The ternary alloy illustratively includes two metallic group III elements such as indium and gallium; but the principle can be extended to ternary alloys including two group V elements, such as arsenic and antimony. Further, quaternary alloys of III-V elements can be employed. The absorbing layer is selected to be substantially intrinsic. The latter is the case for an N-type layer of In.sub.x Ga.sub.(1.sub.-x) As. Matching of this absorbing layer to a gallium arsenide substrate is achieved by a plurality of step-graded composition layers of indium gallium arsenide.
    • 在红外光电检测装置中,使用光电检测器二极管,其包括具有三元III-V半导体合金的不同组成的两个外延层的异质结,使得外层将用作辐射入口窗口以及物理保护 所谓的直接光电二极管配置的底层吸收层。 三元合金示例性地包括两种金属III族元素,例如铟和镓; 但原理可以扩展到三元合金,包括两种V族元素,如砷和锑。 此外,可以使用III-V族元素的四元合金。 吸收层被选择为基本固有的。 后者是In x Ga(1-x)As的N型层的情况。 这种吸收层与砷化镓衬底的匹配通过砷化铟镓的多个阶梯分级组合物层来实现。