会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 90. 发明授权
    • Spontaneously emitting hetero-structure junction diodes
    • 自发发射异质结结二极管
    • US3812516A
    • 1974-05-21
    • US30737772
    • 1972-11-17
    • BELL TELEPHONE LABOR INC
    • HAYASHI I
    • H01L21/208H01L33/00H01S5/32H01L15/02
    • H01L33/0025H01L21/02395H01L21/02546H01L21/02576H01L21/02579H01L21/02581H01L21/02625H01L21/02628H01L21/02658H01S5/32
    • A light emitting heterostructure diode includes a multilayered structure having a common conductivity type heterojunction and a p-n junction separated therefrom by a distance less than the diffusion length of minority carriers, thereby defining an intermediate region bounded by said junctions. In a single heterostructure (SH) diode there is one such heterojunction separating narrow and wide band gap regions of the same conductivity type and the p- n junction is a p-n homojunction formed in one instance by the diffusion of impurities into the narrow band gap region. When provided with an appropriate resonator, a confinement effect produced by an energy step (at the heterojunction) in the conduction band permits the SH diode to lase at higher temperatures and lower thresholds than heretofore possible, radiative electron-hole recombination occurring between the conduction and valence bands. In a double heterostructure (DH) the diode is provided with a second heterojunction positioned on the side of the p-n junction remote from the other heterojunction, or positioned coincident with the p-n junction, thereby defining an intermediate region between the pair of heterojunctions. When provided with an appropriate resonator the DH diode exhibits lower thresholds at higher temperatures than even the aforementioned SH diode. In both diodes additional improvment in the threshold occurs if the diode is provided with deep impurity levels or deep band tails. Without a resonator, both the SH and DH diodes function as electroluminescent diodes with radiation being emitted from the intermediate region through the wide band gap region, thereby advantageously resulting in lower absorption losses and higher efficiency. Dome-like configurations of the wide band gap region of this diode are also disclosed.