会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 86. 发明授权
    • Method of fabricating a ferroelectric memory cell
    • 制造铁电存储单元的方法
    • US06548343B1
    • 2003-04-15
    • US09702985
    • 2000-10-31
    • Scott R. SummerfeltTheodore S. MoiseGuoqiang XingLuigi ColomboTomoyuki SakodaStephen R. GilbertAlvin L. S. LokeShawming MaRahim KavariLaura Wills-MirkarimiJun Amano
    • Scott R. SummerfeltTheodore S. MoiseGuoqiang XingLuigi ColomboTomoyuki SakodaStephen R. GilbertAlvin L. S. LokeShawming MaRahim KavariLaura Wills-MirkarimiJun Amano
    • H01L218242
    • H01L27/11502H01L27/11507H01L28/57
    • An embodiment of the instant invention is a method of fabricating a ferroelectric capacitor which is situated over a structure, the method comprising the steps of: forming a bottom electrode on the structure (124 of FIG. 1), the bottom electrode having a top surface and sides; forming a capacitor dielectric (126 of FIG. 1) comprised of a ferroelectric material on the bottom electrode, the capacitor dielectric having a top surface and sides; forming a top electrode (128 and 130 of FIG. 1) on the capacitor dielectric, the top electrode having a top surface and sides, the ferroelectric capacitor is comprised of the bottom electrode, the capacitor dielectric, and the top electrode; forming a barrier layer (118 and 120 of FIG. 1) on the side of the bottom electrode, the side of the capacitor dielectric, and the side of the top electrode; forming a dielectric layer on the barrier layer and the structure, the dielectric having a top surface and a bottom surface; and performing a thermal step for a duration at a temperature between 400 and 900 C. in an ambient comprised of a gas selected from the group consisting of: argon, nitrogen, and a combination thereof, the step of performing a thermal step being performed after the step of forming the barrier layer.
    • 本发明的一个实施例是制造位于结构上方的铁电电容器的方法,所述方法包括以下步骤:在所述结构(图1的124)上形成底电极,所述底电极具有顶表面 和边; 在底部电极上形成由铁电材料构成的电容器电介质(图1的126),电容器电介质具有顶表面和侧面; 在电容器电介质上形成顶电极(图1的128和130),顶电极具有顶表面和侧面,铁电电容器由底电极,电容器电介质和顶电极组成; 在底电极侧,电容器电介质侧和顶电极侧形成阻挡层(图1的118和120); 在所述阻挡层和所述结构上形成电介质层,所述电介质具有顶表面和底表面; 并且在由选自氩,氮及其组合的气体组成的环境中在400-900℃的温度下进行热步骤,所述环境包括:在步骤 形成阻挡层的步骤。
    • 88. 发明授权
    • Method of forming dual metal gate structures or CMOS devices
    • 形成双金属栅极结构或CMOS器件的方法
    • US06291282B1
    • 2001-09-18
    • US09500330
    • 2000-02-08
    • Glen D. WilkScott R. Summerfelt
    • Glen D. WilkScott R. Summerfelt
    • H01L218283
    • H01L29/4966H01L21/28079H01L21/28088H01L21/823842H01L29/42376H01L29/495H01L29/66545H01L29/6659
    • An embodiment of the instant invention is a method of forming a first transistor having a first gate electrode and a second transistor having a second gate electrode on a semiconductor substrate, the method comprising the steps of: forming a conductive material (step 216 of FIG. 2) insulatively disposed over the semiconductor substrate, the conductive material having a work function; and altering a portion of the conductive material (step 218 of FIG. 2) so as to change the work function of the altered conductive material, the conductive material to form the first gate electrode and the altered conductive material to form the second gate electrode. Preferably, the first transistor is an NMOS device, the second transistor is a PMOS device, and the first transistor and the second transistor form a CMOS device. The conductive material is, preferably, comprised of a conductor selected from the group consisting of: Ta, Mo, Ti and any combination thereof. Preferably, the step of altering a portion of the conductive material is comprised of: subjecting the portion of the conductive material to a plasma which incorporates a nitrogen-containing gas.
    • 本发明的一个实施例是一种在半导体衬底上形成具有第一栅电极和第二晶体管的第一晶体管的方法,所述第一晶体管具有第二栅电极,所述方法包括以下步骤:形成导电材料(图1的步骤216)。 2)绝缘地设置在半导体衬底上,导电材料具有功函数; 并改变导电材料的一部分(图2的步骤218),以改变改变的导电材料的功函数,导电材料形成第一栅电极和改变的导电材料以形成第二栅电极。 优选地,第一晶体管是NMOS器件,第二晶体管是PMOS器件,并且第一晶体管和第二晶体管形成CMOS器件。 导电材料优选由选自Ta,Mo,Ti及其任何组合的导体组成。 优选地,改变导电材料的一部分的步骤包括:使导电材料的该部分经受含有含氮气体的等离子体。
    • 89. 发明授权
    • Electrical connections to dielectric materials
    • US06275370B1
    • 2001-08-14
    • US09778641
    • 2001-02-07
    • Bruce E. GnadeScott R. Summerfelt
    • Bruce E. GnadeScott R. Summerfelt
    • H01G406
    • A preferred embodiment of this invention comprises an oxidizable layer (e.g. tantalum 48), an oxygen gettering layer (e.g. platinum/tantalum mixture 34) overlaying the oxidizable layer, a noble metal layer (e.g. platinum 36) overlaying the oxygen gettering layer, and a high-dielectric-constant material layer (e.g. barium strontium titanate 38) overlaying the noble metal layer. The novel structures presented provide electrical connection to high-dielectric-constant materials without the disadvantages of current structures. The oxygen gettering layer controls oxygen diffusion, minimizing the formation of a resistive layer either in the lower electrode or at the lower electrode/substrate interface. The oxygen gettering layer acts as a gettering site for oxygen, where the oxygen oxidizes the reactive metal portion of the layer, leaving the noble metal portion of the layer intact. While the oxides/suboxides (e.g. tantalum pentoxide 40) that are formed are resistive, they are dispersed within the noble metal matrix, leaving a conductive path from the top of the layer to the bottom. This invention provides a stable and electrically conductive electrode for high-dielectric-constant materials while using standard integrated circuit materials to facilitate and economize the manufacturing process.
    • 90. 发明授权
    • Electrical connections to dielectric materials
    • 与电介质材料的电气连接
    • US06215650B1
    • 2001-04-10
    • US09521504
    • 2000-03-09
    • Bruce E. GnadeScott R. Summerfelt
    • Bruce E. GnadeScott R. Summerfelt
    • H01G406
    • H01L28/75H01L21/32051H01L28/55H01L28/56H01L28/60Y10S505/818Y10T29/435Y10T29/49128
    • A preferred embodiment of this invention includes an oxidizable layer (e.g. tantalum 48), an oxygen gettering layer (e.g. platinum/tantalum mixture 34) overlaying the oxidizable layer, a noble metal layer (e.g. platinum 36) overlaying the oxygen gettering layer, and a high-dielectric-constant material layer (e.g. barium strontium titanate 38) overlaying the noble metal layer. The novel structures presented provide electrical connection to high-dielectric-constant materials without the disadvantages of current structures. The oxygen gettering layer controls oxygen diffusion, minimizing the formation of a resistive layer either in the lower electrode or at the lower electrode/substrate interface. The oxygen gettering layer acts as a gettering site for oxygen, where the oxygen oxidizes the reactive metal portion of the layer, leaving the noble metal portion of the layer intact. While the oxides/suboxides (e.g. tantalum pentoxide 40) that are formed are resistive, they are dispersed within the noble metal matrix, leaving a conductive path from the top of the layer to the bottom. This invention provides a stable and electrically conductive electrode for high-dielectric-constant materials while using standard integrated circuit materials to facilitate and economize the manufacturing process.
    • 本发明的优选实施方案包括可氧化层(例如钽48),覆盖可氧化层的氧吸气层(例如铂/钽混合物34),覆盖氧吸气层的贵金属层(例如铂36)和 高介电常数材料层(例如钛酸钡锶38)覆盖贵金属层。 所提出的新颖结构提供与高介电常数材料的电连接,而不存在电流结构的缺点。 氧吸气层控制氧气扩散,使下电极或下电极/衬底界面处的电阻层的形成最小化。 吸氧层用作氧的吸除位置,其中氧氧化层的反应性金属部分,使层的贵金属部分保持完整。 虽然形成的氧化物/低氧化物(例如五氧化二钽40)是电阻的,但是它们分散在贵金属基质内,留下从层的顶部到底部的导电路径。 本发明提供一种用于高介电常数材料的稳定且导电的电极,同时使用标准集成电路材料来促进和节约制造工艺。