会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 83. 发明授权
    • Magneto-optical recording medium
    • 磁光记录介质
    • US5982713A
    • 1999-11-09
    • US719753
    • 1996-09-25
    • Junichiro NakayamaJunji HirokaneMichinobu MiedaAkira Takahashi
    • Junichiro NakayamaJunji HirokaneMichinobu MiedaAkira Takahashi
    • G11B11/10G11B11/105G11B11/00
    • G11B11/10586
    • A magneto-optical recording medium includes first, second, and third magnetic layers laminated in this order. The first magnetic layer, made of a rare earth-transition metal alloy, has a great coercive force at room temperature and is transition metal rich in a temperature range between room temperature and a Curie temperature of the first magnetic layer. The second magnetic layer, made of a rare earth-transition metal alloy, has a Curie temperature higher than that of the first magnetic layer and is rare-earth metal rich at room temperature. The third magnetic layer, made of a rare earth-transition metal alloy, has a Curie temperature higher than that of the first magnetic layer, and a compensation temperature falling in a temperature range between room temperature and the Curie temperature of the third magnetic layer. A magnetization of the third magnetic layer is transferred to the first magnetic layer at a temperature higher than room temperature. A perpendicular magnetic anisotropy Ku3 satisfies 0.3.times.10.sup.6 erg/cc
    • 磁光记录介质包括依次层叠的第一,第二和第三磁性层。 由稀土 - 过渡金属合金制成的第一磁性层在室温下具有很大的矫顽力,并且是在室温和第一磁性层的居里温度之间的温度范围内富含过渡金属。 由稀土 - 过渡金属合金制成的第二磁性层的居里温度高于第一磁性层的居里温度,并且在室温下富含稀土金属。 由稀土 - 过渡金属合金制成的第三磁性层的居里温度高于第一磁性层的居里温度,并且补偿温度落在室温和第三磁性层的居里温度之间的温度范围内。 在高于室温的温度下将第三磁性层的磁化转移到第一磁性层。 垂直磁各向异性Ku3满足0.3×10 6 erg / cc
    • 84. 发明授权
    • Method and apparatus for reproducing data from a magneto-optical
recording medium having a readout layer, transfer layer and recording
layer
    • 用于从具有读出层,转印层和记录层的磁光记录介质再现数据的方法和装置
    • US5962126A
    • 1999-10-05
    • US975517
    • 1997-11-20
    • Michinobu MiedaHiroyuki KatayamaAkira TakahashiKenji Ohta
    • Michinobu MiedaHiroyuki KatayamaAkira TakahashiKenji Ohta
    • G11B11/10G11B11/105G11B5/66
    • G11B11/10515G11B11/10586Y10S428/90Y10T428/26
    • The invention features an apparatus and method for reproducing recorded bits from a magneto-optical recording medium. The medium includes a base, a readout layer formed on the base, a transfer layer formed on the readout layer and a recording layer formed on the transfer layer. The readout and recording layers each exhibit perpendicular magnetization in a temperature range between room temperature and, respectively, the readout layer's Curie temperature and the recording layer's Curie temperature. The transfer layer is predominant in-plane magnetization at room temperature and an in-plane to perpendicular magnetization transition occurs at a temperature above room temperature. Also, the recording layer Curie temperature is lower than the Curie temperature of the transfer layer. The reproducing method includes the steps of projecting a light beam, applying a subsidiary magnetic field and reproducing information based on reflected light from the readout layer while applying the subsidiary magnetic field. The light beam is projected onto the readout layer from the side of the base so the in-plane to perpendicular magnetization transition occurs in a portion of the transfer layer, the portion corresponding to a central portion of the light beam spot. The intensity of the subsidiary magnetic field is higher than the coercive force of the readout layer and less than the exchange coupling force exerted from the recording-layer and the transfer layer to the readout layer.
    • 本发明的特征在于一种用于从磁光记录介质再现记录位的装置和方法。 介质包括基底,形成在基底上的读出层,形成在读出层上的转印层和形成在转印层上的记录层。 读出和记录层各自在室温和读出层的居里温度和记录层的居里温度之间的温度范围内呈现垂直磁化强度。 转移层在室温下是主要的面内磁化,并且在高于室温的温度下发生面内到垂直磁化转变。 此外,记录层居里温度低于转印层的居里温度。 再现方法包括以下步骤:投射光束,施加辅助磁场,并且在施加辅助磁场的同时基于来自读出层的反射光再现信息。 光束从基底侧投射到读出层上,因此在转移层的一部分中发生垂直磁化转变,该部分对应于光束点的中心部分。 辅助磁场的强度高于读出层的矫顽力,并且小于从记录层和转印层施加到读出层的交换耦合力。
    • 87. 发明授权
    • Magneto-optical recording medium having a plurality of magnetic layers
    • 具有多个磁性层的磁光记录介质
    • US5838645A
    • 1998-11-17
    • US866594
    • 1997-05-30
    • Junji HirokaneMichinobu MiedaJunichiro NakayamaAkira Takahashi
    • Junji HirokaneMichinobu MiedaJunichiro NakayamaAkira Takahashi
    • G11B11/10G11B11/105G11B11/00
    • G11B11/10515G11B11/10586
    • A magneto-optical disk provided with a record layer having a recording magnetic domain where data are recorded, an auxiliary reproduction layer for transferring the record data in the record layer to a reproduction layer by generating a floating magnetic field corresponding to the data in the record layer, and the reproduction layer from which the data are read out through irradiation of a light beam, which are sequentially layered while interposing nonmagnetic intermediate layers therebetween. The stable magnetic domain width in the auxiliary reproduction layer is shorter than the recording magnetic domain width at room temperature and extends as the temperature rises and becomes longer at or above a first temperature. The stable magnetic domain width in the reproduction layer is longer than the recording magnetic domain width at room temperature and lessens as the temperature rises and becomes shorter at or above a second temperature which is lower than the first temperature. The first and second temperatures satisfy a condition expressed as: room temperature
    • 具有记录数据的记录磁畴的磁光盘,用于通过产生与记录中的数据相对应的浮动磁场将记录层中的记录数据传送到再现层的辅助再现层 层,以及通过照射光束从中读出数据的再现层,它们在其间插入非磁性中间层的顺序层叠。 辅助再生层中的稳定的磁畴宽度比室温下的记录磁畴宽度短,随着温度升高而延长,在第一温度以上也变长。 再生层中的稳定的磁畴宽度比室温下的记录磁畴宽度长,随着温度的升高而降低,在比第一温度低的第二温度以上也变短。 第一和第二温度满足条件表示为:室温<第二温度<第一温度APPROXLESS光束点中的最大温度。 因此,在再现层中立即产生并擦除反向磁畴,并且所得到的再现信号是矩形信号,从而可以提供能够精确地再现高密度记录数据的磁光记录介质。
    • 88. 发明授权
    • Process for production of a silicon nitride ceramic
    • 氮化硅陶瓷的制造方法
    • US5804521A
    • 1998-09-08
    • US905025
    • 1997-08-01
    • Akira TakahashiMasaaki MasudaKeiichiro Watanabe
    • Akira TakahashiMasaaki MasudaKeiichiro Watanabe
    • C04B35/626C04B35/593C04B35/587
    • C04B35/5935
    • A silicon nitride ceramic of the present invention possesses excellent strength of the surface, including a silicon nitride and a rare earth oxide compound and being characterized in that the ratio of the transverse rupture strength, at a room temperature, of the fired surface used as a tensile surface to the transverse rupture strength, at a room temperature, of the worked surface used as a tensile surface subjected to the working so as to have the surface roughness of R.sub.MAX 0.8 .mu.m or less is 0.7 or more, and the strength ratio is satisfied even when any portion besides the fired surface is utilized as the tensile surface to be worked to have the surface roughness of R.sub.MAX 0.8 .mu.m or less. The present invention also provides a process for producing a silicon nitride ceramic including the steps of: (1) mixing .alpha.-Si.sub.3 N.sub.4 powder and .beta.-Si.sub.3 N.sub.4 powder to obtain a raw material powder so as to satisfy the formula indicated by 0.05.ltoreq..beta./.alpha.+.beta..ltoreq.0.50, in which a refers to the weight of .alpha.-Si.sub.3 N.sub.4 powder and .beta. refers to the weight of .beta.-Si.sub.3 N.sub.4 powder; (2) mixing at least one sintering aid to the raw material powder; (3) forming the powder mixture to give a compact; and (4) firing the compact at a temperature ranging from 1800.degree. to 2000.degree. C. under a nitrogen atmosphere having an atmospheric pressure of at least 1 atm.
    • 本发明的氮化硅陶瓷具有优异的表面强度,包括氮化硅和稀土氧化物,其特征在于,在室温下,作为烧结表面的烧结表面的横向断裂强度的比例 作为经受加工的拉伸面的加工面的拉伸面与横向断裂强度在室温下的表面粗糙度为0.8μm以下,强度比为 即使将烧成的表面以外的任何部分用作待加工的拉伸面,其表面粗糙度为0.8μm以下。 本发明还提供一种制造氮化硅陶瓷的方法,包括以下步骤:(1)将α-Si 3 N 4粉末和β-Si 3 N 4粉末混合以获得原料粉末,以满足0.05≤β /α+β<0.50,其中a表示α-Si 3 N 4粉末的重量,β表示β-Si 3 N 4粉末的重量; (2)将至少一种烧结助剂与原料粉末混合; (3)形成粉末混合物以产生致密的; 和(4)在大气压至少为1个大气压的氮气气氛下,在1800〜2000℃的温度下烧成。