会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 83. 发明授权
    • Charge balancing method in a current input ADC
    • 电流输入ADC中的电荷平衡方法
    • US07372392B1
    • 2008-05-13
    • US11679070
    • 2007-02-26
    • Jun WanPeter R. Holloway
    • Jun WanPeter R. Holloway
    • H03M1/12
    • H03M1/0607H03F3/45179H03F3/45183H03F3/45475H03F3/45766H03F2200/264H03F2203/45136H03F2203/45212H03F2203/45342H03F2203/45352
    • A method for charge balancing in a current input ADC including maintaining a low capacitance value at the integrator output node where the capacitance value is independent of the integrator output voltage and operating conditions, generating a first voltage pedestal at a first active device switch at the end of the autozero phase having a first voltage polarity and a first magnitude, generating a second voltage pedestal at a second active device switch at the end of the integration phase having an opposite voltage polarity and the first magnitude, and summing the first voltage pedestal with the second voltage pedestal. The difference between the first voltage pedestal and the second voltage pedestal results in a net voltage error. The first and second voltage pedestals have the first magnitude under all operating conditions of the modulator and the two voltage pedestals cancel to yield a small net voltage error.
    • 一种用于电流输入ADC中的电荷平衡的方法,包括在积分器输出节点处维持低电容值,其中电容值与积分器输出电压和工作条件无关,在最终的第一有源器件开关处产生第一电压基座 的自相位相具有第一电压极性和第一幅度,在具有相反电压极性和第一幅度的积分相位结束时在第二有源器件开关处产生第二电压基座,并且将第一电压基座与 第二电压基座。 第一电压基座和第二电压基座之间的差异导致净电压误差。 第一和第二电压基座在调制器的所有工作条件下都具有第一幅度,并且两个电压基座取消以产生小的净电压误差。
    • 84. 发明授权
    • Frequency ratio digitizing temperature sensor with linearity correction
    • 频率比数字化温度传感器具有线性校正
    • US07331708B2
    • 2008-02-19
    • US11361912
    • 2006-02-23
    • Eric D. BlomJun WanStuart H. Urie
    • Eric D. BlomJun WanStuart H. Urie
    • G01K7/14H03K3/01
    • G01K7/01
    • A frequency ratio digitizing temperature sensor for generating a linearity-corrected temperature output signal includes an input generation circuit receiving a PTAT current and a CTAT current and a frequency ratio ADC including data and reference oscillators. The input generation circuit generates a first current from the weighted sum of the PTAT current and the CTAT current and also generates a first corrected current being the sum of the first current and a first portion of the PTAT current. The input generation circuit provides a first output current indicative of the PTAT current and a first output voltage generated by applying the first corrected current to a first resistor for use with the data oscillator and provides a second output current being the first corrected current and a second output voltage generated by applying the first current to a second resistor for use with the reference oscillator of the ADC.
    • 用于产生线性校正温度输出信号的频率比数字化温度传感器包括接收PTAT电流和CTAT电流的输入产生电路和包括数据和参考振荡器的频率比ADC。 输入产生电路根据PTAT电流和CTAT电流的加权和产生第一电流,并且还产生第一校正电流,该第一校正电流是PTAT电流的第一电流和第一部分之和。 输入产生电路提供指示PTAT电流的第一输出电流和通过将第一校正电流施加到与数据振荡器一起使用的第一电阻器产生的第一输出电压,并提供作为第一校正电流的第二输出电流和第二输出电流 通过将第一电流施加到与ADC的参考振荡器一起使用的第二电阻器产生的输出电压。
    • 85. 发明申请
    • Frequency ratio digitizing temperature sensor with linearity correction
    • 频率比数字化温度传感器具有线性校正
    • US20070195856A1
    • 2007-08-23
    • US11361912
    • 2006-02-23
    • Eric BlomJun WanStuart Urie
    • Eric BlomJun WanStuart Urie
    • G01K11/22
    • G01K7/01
    • A frequency ratio digitizing temperature sensor for generating a linearity-corrected temperature output signal includes an input generation circuit receiving a PTAT current and a CTAT current and a frequency ratio ADC including data and reference oscillators. The input generation circuit generates a first current from the weighted sum of the PTAT current and the CTAT current and also generates a first corrected current being the sum of the first current and a first portion of the PTAT current. The input generation circuit provides a first output current indicative of the PTAT current and a first output voltage generated by applying the first corrected current to a first resistor for use with the data oscillator and provides a second output current being the first corrected current and a second output voltage generated by applying the first current to a second resistor for use with the reference oscillator of the ADC.
    • 用于产生线性校正温度输出信号的频率比数字化温度传感器包括接收PTAT电流和CTAT电流的输入产生电路和包括数据和参考振荡器的频率比ADC。 输入产生电路根据PTAT电流和CTAT电流的加权和产生第一电流,并且还产生第一校正电流,该第一校正电流是PTAT电流的第一电流和第一部分之和。 输入产生电路提供指示PTAT电流的第一输出电流和通过将第一校正电流施加到与数据振荡器一起使用的第一电阻器产生的第一输出电压,并提供作为第一校正电流的第二输出电流和第二输出电流 通过将第一电流施加到与ADC的参考振荡器一起使用的第二电阻器产生的输出电压。
    • 86. 发明授权
    • Dual-channel instrumentation amplifier
    • 双通道仪表放大器
    • US07119612B1
    • 2006-10-10
    • US10954417
    • 2004-09-29
    • Peter R. HollowayJun Wan
    • Peter R. HollowayJun Wan
    • H03F1/02H03F3/45
    • H03F1/02H03F3/45179H03F3/45188H03F3/45475H03F3/68H03F2200/261H03F2200/78H03F2203/45318H03F2203/45521
    • A dual-channel instrumentation amplifier includes two channels of PMOS transistor differential pairs which are configured in a Y-connection and cross-coupled to two diode-connected NMOS transistors. Each input channel has a non-linear voltage-current characteristic. But when the differential currents cancel at the NMOS transistor diodes, both input channels have the same differential input voltage, regardless of any non-linearity. As thus configured, a high accuracy instrumentation amplifier which operates in current mode is realized with excellent DC matching and high common mode rejection ratio. In one embodiment, the dual-channel instrumentation amplifier is used as input stage for the linear comparator to enable the linear comparator to operate at a high rate of speed with excellent channel matching.
    • 双通道仪表放大器包括两个PMOS晶体管差分对通道,它们被配置为Y形连接并交叉耦合到两个二极管连接的NMOS晶体管。 每个输入通道具有非线性电压 - 电流特性。 但是当NMOS晶体管二极管上的差分电流消失时,两个输入通道都具有相同的差分输入电压,无论任何非线性。 如此配置,通过优异的直流匹配和高共模抑制比实现了以电流模式工作的高精度仪表放大器。 在一个实施例中,双通道仪表放大器用作线性比较器的输入级,使得线性比较器能够以高速率运行,具有出色的通道匹配。
    • 88. 发明授权
    • Self-regulating low current watchdog current source
    • 自调节低电流看门狗电流源
    • US07015744B1
    • 2006-03-21
    • US10860473
    • 2004-06-02
    • Peter R. HollowayJun Wan
    • Peter R. HollowayJun Wan
    • G05F1/10
    • G05F3/262H03K17/223
    • A self-regulating current source is formed by a PMOS current mirror and an interconnected pair of NMOS transistors. The NMOS transistors are sized differently and forced to operate at similar currents. The difference of the Vgs voltages of the NMOS transistors is impressed across the resistor to develop a stable output current. In particular, the current source starts reliably at low supply voltages and operates to reliably generate a stable low output current at a well-controlled operating point. The self-regulating current source can be used effectively as the watchdog current source of a power-on reset circuit to ensure reliable and robust operation even at low Vdd voltage values.
    • 自调节电流源由PMOS电流镜和互连的一对NMOS晶体管形成。 NMOS晶体管的尺寸不同,并被迫在类似的电流下工作。 NMOS晶体管的Vgs电压差在电阻器上施加,以产生稳定的输出电流。 特别地,电流源在低电源电压下可靠地启动,并且操作以在良好控制的工作点可靠地产生稳定的低输出电流。 自调节电流源可以有效地用作上电复位电路的看门狗电流源,以确保即使在低Vdd电压值下也能稳定运行。
    • 89. 发明授权
    • Synchronized delta-VBE measurement system
    • 同步delta-VBE测量系统
    • US06957910B1
    • 2005-10-25
    • US10835478
    • 2004-04-28
    • Jun WanPeter R. HollowayGary E. Sheehan
    • Jun WanPeter R. HollowayGary E. Sheehan
    • G01K7/01G01K7/16H01L35/00H03K17/06
    • H03K17/063G01K7/01
    • A circuit in an integrated circuit for measuring temperature dependent voltages of a temperature sensing element includes a voltage generator circuit providing the temperature dependent voltages, a first sampling switch and a second sampling switch. The voltage generator circuit includes a temperature sensing element being excited by a first switched current and a second switched current. The first and second sampling switches sample a first voltage and a second voltage at the temperature sensing element while the temperature sensing element is being excited by the second current and the first current, respectively. Each of the first and second sampling switches includes a boosted switch circuit incorporating a pedestal voltage compensation circuit. The sampled first and second voltages are coupled to be stored on capacitors external to the integrated circuit. The difference between the first voltage and the second voltage is measured to determine the temperature of the integrated circuit.
    • 用于测量温度感测元件的温度相关电压的集成电路中的电路包括提供温度相关电压的电压发生器电路,第一采样开关和第二采样开关。 电压发生器电路包括由第一开关电流和第二开关电流激励的温度感测元件。 第一和第二采样开关分别在第二电流和第一电流激发温度感测元件时在温度感测元件处采样第一电压和第二电压。 第一采样开关和第二采样开关中的每一个包括具有基座电压补偿电路的升压开关电路。 采样的第一和第二电压被耦合以存储在集成电路外部的电容器上。 测量第一电压和第二电压之间的差以确定集成电路的温度。
    • 90. 发明授权
    • Digitizing temperature measurement system
    • 数字化温度测量系统
    • US06869216B1
    • 2005-03-22
    • US10402658
    • 2003-03-27
    • Peter R. HollowayEric D. BlomJun WanStuart H. Urie
    • Peter R. HollowayEric D. BlomJun WanStuart H. Urie
    • G01K1/02G01K7/01H03M3/02H03M3/00
    • H03M3/324G01K1/028G01K7/01H03M3/43H03M3/456
    • A digitizing temperature measurement system for providing a digital temperature measurement includes an excitation source for providing switched excitation currents to two or three temperature sensing elements and an ADC circuit including a charge-balancing modulator and a digital post processing circuit. The system utilizes synchronous AC excitation of the temperature sensing elements and an AC coupled analog-to-digital converter input. The temperature measurement system also implements correlated double sampling for noise cancellation to provide low noise and highly accurate analog-to-digital conversions. The modulator receives a charge domain reference signal generated by a reference charge packet generator incorporating a charge based bandgap subsystem. Therefore, the temperature measurement system can be operated at very low supply voltages, such as 1.0 Vdc. A low noise and highly accurate temperature measurement system is thus realized where temperature measurements of very high resolutions (up to 16 bit) can be attained.
    • 用于提供数字温度测量的数字化温度测量系统包括用于向两个或三个温度感测元件提供开关激励电流的激励源和包括电荷平衡调制器和数字后处理电路的ADC电路。 该系统利用温度感测元件的同步AC励磁和AC耦合模数转换器输入。 温度测量系统还实现了噪声消除的相关双采样,以提供低噪声和高精度的模数转换。 调制器接收由包含基于电荷的带隙子系统的参考电荷包发生器产生的电荷域参考信号。 因此,温度测量系统可以在非常低的电源电压下工作,例如1.0 Vdc。 因此,实现了可以获得非常高分辨率(高达16位)的温度测量的低噪声和高精度的温度测量系统。