会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 87. 发明授权
    • Magnetoresistive device and method of fabricating same
    • US10797224B2
    • 2020-10-06
    • US15904189
    • 2018-02-23
    • IMEC VZWKatholieke Universiteit Leuven
    • Praveen RaghavanDavide Francesco CrottiRaf Appeltans
    • H01L27/22H01L43/02G11C5/06G11C11/16H01L43/12
    • The disclosed technology generally relates to magnetoresistive devices, and more particularly to a magnetic tunnel junction (MTJ) device formed in an interconnection structure, and to a method of integrating the (MTJ) device in the interconnection structure. According to an aspect, a device includes a first interconnection level including a first dielectric layer and a first set of conductive paths arranged in the first dielectric layer, a second interconnection level arranged on the first connection level and including a second dielectric layer and a second set of conductive paths arranged in the second dielectric layer, and a third interconnection level arranged on the second interconnection level and including a third dielectric layer and a third set of conductive paths arranged in the third dielectric layer. The device additionally includes a magnetic tunnel junction (MTJ) device including a bottom layer, a top layer and an MTJ structure arranged between the bottom layer and the top layer, wherein the bottom layer is connected to a bottom layer contact portion of the first set of conductive paths and the top layer is connected to a top layer contact portion of the second or third set of conductive paths. The device further includes a multi-level via extending through the second dielectric layer and the third dielectric layer, between a first via contact portion of the first set of conductive paths and a second via contact portion of the third set of conductive paths, wherein a height of the MTJ device corresponds to, or-is less than, a height of the multi-level via, e.g., wherein the height of the MTJ device corresponds to or is less than a height of the second interconnection level.
    • 89. 发明申请
    • PATTERNING DEVICE
    • US20200290009A1
    • 2020-09-17
    • US16886486
    • 2020-05-28
    • Katholieke Universiteit Leuven, K.U.Leuven R&D
    • Jeroen LammertynDaan Witters
    • B01J19/00B01L3/00
    • A miniaturized, automated method for controlled printing of large arrays of nano- to femtoliter droplets by actively transporting mother droplets over hydrophilic-in-hydrophobic (“HIH”) micropatches. The technology uses single or double-plate devices where mother droplets can be actuated and HIH micropatches on one or both plates of the device where the droplets are printed. Due to the selective wettability of the hydrophilic micropatches in a hydrophobic matrix, large nano- to femtoliter droplet arrays are created when mother droplets are transported over the arrays. The parent droplets are moved by various droplet actuation principles. Also, a method using two plates placed one top another while being separated by a spacer. One plate is dedicated to confirming and guiding parent droplets by using hydrophilic patches in a hydrophobic matrix, while the other plate contains HIH arrays for printing of the droplets. When the parent droplet guidance plate is rotated over the plate dedicated to printing of nano- to femtoliter droplets, the droplets are dispensed inside the HIH array utilizing their selective wettability. The methods allow the parent droplets to move over the HIH arrays many times, providing advantages for performing bio-assays or miniaturized materials synthesis in nano- to femtoliter sized droplets. With controlled evaporation of the dispensed droplets of solution, large arrays of printed material can be generated in seconds. The methods provide a nano- to femtoliter droplet printing technique for a wide variety of applications, e.g., protein- or cell-based bio-assays or printing of crystalline structures, suspensions of nanoparticles or microelectronic components.