会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Liquid to liquid biological particle concentrator
    • 液体至液体生物颗粒浓缩器
    • US08758623B1
    • 2014-06-24
    • US13368197
    • 2012-02-07
    • David S. AlburtyAndrew E. PageZachary A. PackinghamDaniel B. Marske
    • David S. AlburtyAndrew E. PageZachary A. PackinghamDaniel B. Marske
    • B01D65/02B01D11/00B01D24/00B01D63/00B08B9/00
    • C12Q1/24C12Q1/04G01N1/4005G01N1/4077G01N2001/4088
    • A rapid one-pass liquid filtration system efficiently concentrates biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. Additional concentration stages may be added in “cascade” fashion, in order to concentrate particles below the size cut of each preceding stage remaining in the separated fluid in a concentrated sample suspension. This process can also be used to create a “band-pass” concentration for concentration of a particular target size particle within a narrow range.
    • 快速单程液体过滤系统有效地将悬浮在液体中的生物颗粒从稀释的进料悬浮液中浓缩。 保留样品浓缩物或滞留物悬浮液,同时在单独的流动流中除去分离的流体。 悬浮的生物颗粒包括尺寸范围为约0.001微米至20微米直径的蛋白质/毒素,病毒,DNA和/或细菌等材料。 这些颗粒的浓度对于在稀释悬浮液中检测目标颗粒是有利的,因为将它们浓缩成小体积使得它们更易于检测。 可以以“级联”方式添加额外的浓缩级,以便使浓缩样品悬浮液中残留在分离的流体中的每个先前阶段的尺寸切割下方的颗粒浓缩。 该方法也可以用于产生在窄范围内浓缩特定靶尺寸颗粒的“带通”浓度。
    • 73. 发明授权
    • Dielectrokinetic chromatography and devices thereof
    • 介电运动色谱及其装置
    • US08702946B1
    • 2014-04-22
    • US12128913
    • 2008-05-29
    • Gabriela S. ChiricaGregory J. FiechtnerAnup K. Singh
    • Gabriela S. ChiricaGregory J. FiechtnerAnup K. Singh
    • G01N27/447G01N27/26B01D15/08B01D63/00
    • G01N27/44791B01D15/08B01D15/1878B01D15/3861B01D63/00G01N30/0005G01N33/569
    • Disclosed herein are methods and devices for dielectrokinetic chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a perturber produces a secondary flow which competes with a primary flow. By decreasing the size of the perturber the secondary flow becomes significant for particles/analytes in the nanometer-size range. Depending on the nature of a particle/analyte present in the fluid and its interaction with the primary flow and the secondary flow, the analyte may be retained or redirected. The composition of the primary flow can be varied to affect the magnitude of primary and/or secondary flows on the particles/analytes and thereby separate and concentrate it from other particles/analytes.
    • 本文公开了用于介电运动色谱法的方法和装置。 如所公开的,这些装置包括具有至少一个扰流器的微通道,其在跨越微通道的宽度的场中产生不均匀性。 场不均匀性与扰流器的相互作用产生与主流相竞争的二次流。 通过减小perturber的尺寸,二次流在纳米尺寸范围内对颗粒/分析物变得显着。 根据流体中存在的颗粒/分析物的性质及其与主流和二次流的相互作用,分析物可被保留或重定向。 可以改变主流的组成以影响颗粒/分析物上的初级和/或次级流动的大小,从而将其与其它颗粒/分析物分离并集中。
    • 76. 发明授权
    • Spiral reverse osmosis membrane element, method of manufacturing the same, and its use method
    • 螺旋反渗透膜元件及其制造方法及其使用方法
    • US08608964B2
    • 2013-12-17
    • US11216051
    • 2005-09-01
    • Atsushi HiroHiroki FujiokaAtsuhito Koumoto
    • Atsushi HiroHiroki FujiokaAtsuhito Koumoto
    • B01D63/00B01D63/10
    • B01D63/10B01D65/003
    • A spiral reverse osmosis membrane element that improves impregnation property of a sealing resin at edges of a membrane leaf and can effectively prevent micro-leaks. The spiral reverse osmosis membrane element comprises a cylindrically wound body comprising a perforated core tube and, spirally wound therearound, a separation membrane, a feed-side passage material and a permeation-side passage material in a laminated state, and a sealing portion for preventing a feed-side liquid and a permeation-side liquid from being mixed together, wherein the separation membrane facing the permeation-side passage material has a structure that a porous support and a skin layer are successively laminated on a non-woven fabric layer, and the sealing portion sealed with a sealing resin is provided at the edges of the separation membrane, wherein the separation membrane is impregnated with the sealing resin at least up to the vicinity of the skin layer through the porous support.
    • 一种提高密封树脂在膜片边缘的浸渍性能的螺旋反渗透膜元件,可有效防止微漏。 所述螺旋反渗透膜元件包括圆筒形卷绕体,所述圆筒形卷绕体包括穿孔芯管,并且在其周围螺旋地缠绕有层压状态的分离膜,进料侧通道材料和渗透侧通道材料,以及用于防止 进料侧液体和渗透侧液体混合在一起,其中面向渗透侧通道材料的分离膜具有多孔载体和表皮层依次层压在无纺布层上的结构,以及 在分离膜的边缘处设置用密封树脂密封的密封部分,其中分离膜通过多孔载体至少直到皮肤层附近浸渍密封树脂。
    • 80. 发明申请
    • METHOD AND ARRANGEMENT FOR GENERATING OXYGEN AND NITRIC OXIDE
    • 生成氧和氮氧化物的方法和装置
    • US20130177657A1
    • 2013-07-11
    • US13822672
    • 2011-09-14
    • Rainer HilbigAchim Gerhard Rolf KoerberClaudia Hannelore Igney
    • Rainer HilbigAchim Gerhard Rolf KoerberClaudia Hannelore Igney
    • A61K33/00B01D63/00
    • A61K33/00B01D63/00C01B13/0251C01B21/24A61K2300/00
    • The invention relates to a Method of generating oxygen and nitric oxide. The method comprises the steps of: guiding an oxygen comprising gas to a primary side of a dense membrane (42), heating the membrane (42) to a temperature at which it is permeable for oxygen, creating a pressure difference between the primary side of the membrane (42) and a secondary side of the membrane (42), wherein a stream of oxygen is generated at the secondary side of the membrane (42) and a stream of oxygen depleted gas is generated at the primary side of the membrane (42). The method according to the invention further comprises the steps of: providing a flow of nitrous oxide comprising gas and heating the nitrous oxide comprising gas to a temperature at which nitric oxide is generated. Thereby, according to the invention, heat generated in the process of operating the membrane is used. According to the invention it is possible to generate both oxygen and nitric oxide in one device making use of several synergistic effects, thus being energy saving.
    • 本发明涉及产生氧和一氧化氮的方法。 该方法包括以下步骤:将含氧气体引导到致密膜(42)的初级侧,将膜(42)加热至可渗透氧气的温度,从而在第 膜(42)和膜(42)的次级侧,其中在膜(42)的次级侧产生氧气流,并且在膜的初级侧产生贫氧气体流( 42)。 根据本发明的方法还包括以下步骤:提供包含气体的一氧化二氮流并将包含一氧化二氮的气体加热至产生一氧化氮的温度。 因此,根据本发明,使用在操作膜的过程中产生的热量。 根据本发明,可以在一个使用几种协同效应的装置中产生氧和一氧化氮,从而节能。