会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 73. 发明授权
    • Synchronized target subsystem for automated docking systems
    • 用于自动对接系统的同步目标子系统
    • US6091345A
    • 2000-07-18
    • US228070
    • 1998-12-10
    • Richard T. HowardMichael L. BookThomas C. Bryan
    • Richard T. HowardMichael L. BookThomas C. Bryan
    • B64G1/24B64G1/26B64G1/36B64G1/64G08B21/00
    • B64G1/24B64G1/646B64G1/26B64G1/36B64G2001/245
    • A synchronized target subsystem for use in an automated docking or station keeping system for docking a chase vehicle with a target vehicle wherein the chase vehicle is provided with a video camera which provides adjacent frames each having a predetermined time duration. A light source mounted on the target vehicle flashes at a frequency which has a time duration which is a multiple of the duration time of the frames, the light being on for at least one frame duration and being off for the remainder of the cycle. An image processing unit is connected to the camera for receiving signals from the camera and subtracting one of the adjacent frames from the other to detect whether the light appears in one frame, both frames or neither frame. If the target light appears in both frames or neither frame, the image processing unit feeds a signal to a timing circuit to advance the video camera one frame. This process is continued until the target light appears in one frame and not in the other, at which time the process of advancing the video camera is stopped.
    • 一种用于自动对接或站保持系统的同步目标子系统,用于将追逐车辆与目标车辆对准,其中追车车辆设置有提供相邻帧的摄像机,每个相机具有预定的持续时间。 安装在目标车辆上的光源以具有持续时间的倍数的持续时间的频率闪烁,光被接通至少一个帧持续时间,并且在该周期的剩余时间期间关闭。 图像处理单元连接到相机,用于从相机接收信号,并从另一个相减一个相邻帧,以检测光是否出现在一帧,两帧或两帧中。 如果目标光出现在两帧或两帧中,则图像处理单元将信号馈送到定时电路,以使摄像机前进一帧。 该过程继续进行,直到目标光出现在一帧而不是在另一帧中,此时停止摄像机前进的过程。
    • 74. 发明授权
    • Spacecraft attitude control using electrical power subsystem
    • 航天器姿态控制采用电力子系统
    • US6089509A
    • 2000-07-18
    • US831119
    • 1997-04-01
    • Sibnath BasuthakurWilliam Joe Haber
    • Sibnath BasuthakurWilliam Joe Haber
    • B64G1/32B64G1/36G05D1/08
    • B64G1/32G05D1/0883B64G1/36
    • A spacecraft (10) body (20) located in an external magnetic field (12) has a substantially unbalanced electrical power bus (18) that generates a composite local magnetic field The electrical power bus (18) substantially surrounds an external surface (22) of the spacecraft (10). Current in the electrical power bus (18) is solar panel (14and 16) and/or battery (34) generated and can flow in different directions through different current paths. Electrical loads (58) are coupled to power converters (56) and current path switches (54) to couple the power converters (56) to the various current paths. A controller (28) takes sensor data (82), determines a required attitude adjustment torque (84), translates that adjustment torque into a composite magnetic field (86), determines an unbalanced bus current profile (88) to generate that composite magnetic field, selects a current source (90) and regulates current path switches (92) to achieve a desired attitude adjustment torque for the spacecraft (10).
    • 位于外部磁场(12)中的航天器(10)主体(20)具有产生复合局部磁场的基本不平衡的电力总线(18)。电力总线(18)基本上围绕外表面(22) 的航天器(10)。 电力总线(18)中的电流是太阳能电池板(14和16)和/或电池(34),并且可以通过不同的电流路径沿不同的方向流动。 电负载(58)耦合到功率转换器(56)和电流路径开关(54),以将功率转换器(56)耦合到各种电流路径。 控制器(28)接收传感器数据(82),确定所需的姿态调节扭矩(84),将该调节转矩转换成复合磁场(86),确定不平衡总线电流分布(88)以产生该复合磁场 选择电流源(90)并且调节电流路径开关(92)以实现对于航天器(10)的期望的姿态调节扭矩。
    • 76. 发明授权
    • Transmitting apparatus for use in non-geostationary satellites
    • 用于非对地静止卫星的发射装置
    • US6061547A
    • 2000-05-09
    • US116347
    • 1998-07-15
    • Kenichi Ikebe
    • Kenichi Ikebe
    • B64G1/10B64G1/22B64G1/24B64G1/36B64G1/66B64G3/00H01Q1/28H01Q3/24H04B7/185
    • B64G1/66B64G1/1007B64G1/365H01Q1/288H01Q3/24H04B7/18513H04B7/18515B64G1/1085B64G1/22B64G1/24
    • A transmitting apparatus for use in non-geostationary satellites which allows compliance with the restrictions placed on PFD even when the Earth is located between the geostationary satellite and the non-geostationary satellite. The transmitting apparatus 10 for use in non-geostationary satellites having a transmitting section 16 which sends a transmitting signal to the geostationary satellite, comprises an Earth-sensing section 19 for detecting the presence of the Earth in the direction of transmission and a transmission direction-shifting section 20 for shifting the direction of transmission of the transmitting signal in response to detection of the Earth-sensing section 19 to prevent the Earth from being exposed to the transmitting signal. Instead of the transmission direction-shifting section 20, there may be used a power supply-suspending section which automatically suspends power supply to the transmitting section 16 thereby stopping transmission of the transmitting signal.
    • 一种用于非对地静止卫星的发射装置,即使地球位于地球静止卫星和非对地静止卫星之间,即使符合PFD限制。 用于具有向地球同步卫星发送发射信号的发射部分16的非对地静止卫星的发射装置10包括用于在传输方向上检测地球存在的地球感测部分19和传输方向 - 移位部分20用于响应于地球感测部分19的检测而移动发射信号的发射方向,以防止地球暴露于发射信号。 代替传输方向切换部分20,可以使用自动暂停向发送部分16供电的电源暂停部分,从而停止发送信号的发送。
    • 77. 发明授权
    • Spacecraft attitude control system using low thrust thrusters
    • 航天器姿态控制系统采用低推力推力器
    • US6053455A
    • 2000-04-25
    • US10718
    • 1998-01-22
    • Xen PriceThomas RandolphKam K. ChanAhmed Kamel
    • Xen PriceThomas RandolphKam K. ChanAhmed Kamel
    • B64G1/26B64G1/28B64G1/36
    • B64G1/26B64G1/28B64G1/36B64G2001/247
    • A spacecraft, such as a geosynchronous weather or communications satellite, is constructed to include a plurality of low thrust thrusters mounted at predetermined locations on at least one of a spacecraft appendage or a spacecraft bus. The plurality of low thrust thrusters are fired in pairs for at least one of removing a disturbance torque or providing fine pointing attitude control. In one embodiment the low thrust thrusters are mounted on a solar array panel, thereby increasing the moment arm and enhancing the thrust output of the low thrust thrusters. In one embodiment a spacecraft has a plurality of low thrust thrusters arranged as at least two sets of two low thrust thrusters, individual ones of the low thrust thrusters of a set being disposed in a V-configuration and mounted at predetermined locations on at least one of a spacecraft appendage or a spacecraft bus. The plurality of low thrust thrusters are selectively fired for achieving control of 3-axes of spacecraft attitude or momentum.
    • 诸如地球同步天气或通信卫星的航天器被构造成包括安装在航天器附件或航天器总线中的至少一个上的预定位置处的多个低推力推进器。 多个低推力推进器被成对地烧制以去除干扰转矩或提供精细指向姿态控制中的至少一个。 在一个实施例中,低推力推进器安装在太阳能阵列面板上,从而增加了力矩臂并增强了低推力推进器的推力输出。 在一个实施例中,航天器具有多个低推力推进器,其布置为至少两组两个低推力推进器,其中一组低推力推进器中的各个被推置成V形并且安装在至少一个 的航天器附件或航天器总线。 选择性地发射多个低推力推进器以实现对航天器姿态或动量的三轴的控制。
    • 79. 发明授权
    • Method and system for autonomous spacecraft control
    • 自主航天器控制方法与系统
    • US5951609A
    • 1999-09-14
    • US865290
    • 1997-05-29
    • Mark L. HansonLorraine M. Fesq
    • Mark L. HansonLorraine M. Fesq
    • B64G1/52B64G1/24B64G1/36B64G1/66G06F17/00
    • G05D1/0088B64G1/24B64G1/36B64G2001/245B64G2001/247
    • An autonomous control system supports autonomous operation of the a spacecraft in carrying out mission objective commands. The control system also provides autonomous fault detection, isolation and recovery. Performance problems and anomalies are detected and accounted for in the carrying out mission objectives. A mission manager module analyzes all incoming mission objective commands to verify that sufficient system resources are available and not already dedicated to other pending mission objective commands. A command processor is included to translate acceptable mission objective commands into lower level command sequences for delivery to a flight manager controlling the underlying spacecraft systems. The mission manager reanalyzes all pending mission objective commands whenever unexpected performance or fault conditions are detected. The mission objective commands can be constructed in a hierarchical fashion, with many sequences predefined within the spacecraft. All portions of the autonomous control system, including software and associated data, can be readily replaced, supplemented or disabled at any time before, during or after launch.
    • 自主控制系统支持宇宙飞船执行任务目标命令的自主操作。 控制系统还提供自主的故障检测,隔离和恢复。 在执行任务目标时,发现和考虑了性能问题和异常情况。 任务管理器模块分析所有传入的任务目标命令,以验证足够的系统资源是否可用,而不是已经专用于其他待执行的任务目标命令。 包括一个命令处理器将可接受的任务目标命令翻译成较低级的命令序列,以便传送给控制底层飞船系统的飞行管理员。 在任何意外的性能或故障条件被检测到时,任务管理器重新分析所有待处理的任务目标命令。 任务目标命令可以以分层方式构建,其中许多序列在航天器内预定义。 自主控制系统的所有部分,包括软件和相关数据,可以在启动之前,期间或之后的任何时间轻松更换,补充或禁用。
    • 80. 发明授权
    • Autonomous star identification
    • 自主明星识别
    • US5935195A
    • 1999-08-10
    • US825190
    • 1997-03-27
    • Brendan Mark Edward Quine
    • Brendan Mark Edward Quine
    • B64G1/36
    • B64G1/361B64G2001/247
    • A method and apparatus compare a star to be identified within an image with data in a database generated from known star data. According to a first aspect of the invention, a target star to be identified within an image is selected, and a number of adjacent stars, normally two, are also selected. The separation values between the stars and a geometric identity for each separation value are determined. This data is compared with corresponding data stored in a database for known stars, where the data in the database is generated using the same technique. According to a second aspect of the invention, a target star is selected, and adjacent stars are selected from an annulus centered on the target star. The separation values for the stars are determined and compared with known separation values stored in a database, where the data in the database is generated using the same annulus centered on each known target star.
    • 一种方法和装置将在图像中识别的星形与从已知星型数据生成的数据库中的数据进行比较。 根据本发明的第一方面,选择要在图像内识别的目标星,并且还选择通常为两个的若干相邻恒星。 确定每个分离值的恒星与几何相似度之间的分离值。 将该数据与存储在已知星的数据库中的相应数据进行比较,其中数据库中的数据使用相同的技术生成。 根据本发明的第二方面,选择目标星,并且从以目标星为中心的环形中选择相邻的星。 确定星星的分离值并与存储在数据库中的已知分离值进行比较,其中数据库中的数据使用以每个已知目标星为中心的相同环形生成。