会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 72. 发明申请
    • OPTICAL WAVEGUIDE
    • 光波导
    • US20070269178A1
    • 2007-11-22
    • US11750608
    • 2007-05-18
    • Nobuhiko SarukuraKo AosakiHideki SatoYoshihiko Sakane
    • Nobuhiko SarukuraKo AosakiHideki SatoYoshihiko Sakane
    • G02B6/00
    • G02B6/1225B82Y20/00G01J3/42
    • Materials transparent to terahertz waves are very limited, and it is difficult to obtain the required performance by selecting the material. Further, it is also difficult to search for a novel material. Therefore, by letting a known material transparent to terahertz waves have a photonic crystal structure and controlling the structure, an optical waveguide having the required properties is provided. An optical waveguide for propagation of far-infrared radiation in the terahertz region, which optical waveguide is made of a fluorinated amorphous polymer. Particularly preferred is a polymer having a fluorinated aliphatic ring structure in its main chain, obtained by cyclopolymerization of a fluorinated monomer having at least two polymerizable double bonds.
    • 对太赫兹波透明的材料非常有限,通过选择材料难以获得所需的性能。 此外,还难以搜索新材料。 因此,通过使已知的对太赫兹波透明的材料具有光子晶体结构并控制结构,提供了具有所需特性的光波导。 用于在太赫兹区域中传播远红外辐射的光波导,该光波导由氟化无定形聚合物制成。 特别优选的是在其主链中具有氟化脂族环结构的聚合物,其通过具有至少两个可聚合双键的氟化单体的环化聚合获得。
    • 73. 发明申请
    • Orientation Data Generation Method, Orientation Sensor Unit and Portable Electronic Equipment
    • 定向数据生成方法,定向传感器单元和便携式电子设备
    • US20070225929A1
    • 2007-09-27
    • US11750618
    • 2007-05-18
    • Hideki SatoYukio Wakui
    • Hideki SatoYukio Wakui
    • G01C17/38
    • G01C17/38
    • Data are input from a geomagnetic sensor that detects magnetic fields in three axial directions, and magnetic field data are measured on the basis of the input data. The measured magnetic field data are sequentially stored, and a determination is made as to whether a plurality of the magnetic field data thus stored lie within a same plane in a three-dimensional orientation space. When it has been determined that the plurality of the magnetic field data lie within the same plane in the three-dimensional orientation space, center coordinates of a circular arc where the stored magnetic field data lie are calculated, as provisional offset values, on the basis of the magnetic field data and in accordance with a predetermined algorithm. Magnetic field data measured after the calculation of the provisional offset values is corrected with the provisional offset values, and an arithmetic operation is performed for determining orientation data on the basis of the corrected magnetic field data.
    • 数据是从检测三轴方向的磁场的地磁传感器输入的,并且根据输入数据测量磁场数据。 依次存储测量的磁场数据,并且确定这样存储的多个磁场数据是否位于三维取向空间中的同一平面内。 当确定多个磁场数据位于三维取向空间中的同一平面内时,计算存储的磁场数据的圆弧的中心坐标作为临时偏移值,基于 的磁场数据并根据预定的算法。 在临时偏移值的计算之后测量的磁场数据用临时偏移值进行校正,并且执行用于基于校正的磁场数据确定取向数据的算术运算。
    • 74. 发明授权
    • Magnetic sensor, and method of compensating temperature-dependent characteristic of magnetic sensor
    • 磁传感器和补偿磁传感器温度依赖特性的方法
    • US07262598B2
    • 2007-08-28
    • US11318591
    • 2005-12-28
    • Hideki Sato
    • Hideki Sato
    • G01R33/06G01R33/07
    • G01R33/02B82Y25/00G01C17/38G01R33/0005G01R33/0064G01R33/0206G01R33/09G01R33/091G01R33/093H01L24/05H01L2224/04042H01L2224/45144H01L2224/48463H01L2924/14H01L2924/00
    • A magnetic sensor 10 includes GMR elements 11-18, and heating coils 21-24 serving as heat generating elements. The elements 11-14 and 15-18 are bridge-interconnected to constitute X-axis and Y-axis sensors, respectively. The heating coils 21, 22, 23, and 24 are disposed adjacent to the elements 11 and 12, the elements 13 and 14, the elements 15 and 16, and the elements 17 and 18, respectively. The heating coils 21-24, when electrically energized, heat mainly the adjacent elements. Therefore, the elements can be heated and cooled in a short period of time in which constant geomagnetism can be ensured. Data for compensation of temperature-dependent characteristic (ratio of change in sensor output value to variation in element temperature) is obtained on the basis of the temperatures of the elements before and after the heating, and the magnetic sensor outputs before and after the heating. Subsequently, the temperature characteristics of the elements are compensated on the basis of the data.
    • 磁传感器10包括作为发热元件的GMR元件11-18和加热线圈21-24。 元件11-14和15-18分别桥接互连以构成X轴和Y轴传感器。 加热线圈21,22,23和24分别邻近元件11和12,元件13和14,元件15和16以及元件17和18设置。 加热线圈21-24在通电时主要加热相邻元件。 因此,能够在能够确保恒定的地磁的短时间内对元件进行加热和冷却。 基于加热前后的元件的温度,加热前后的磁传感器输出,获得温度依赖特性(传感器输出值的变化与元件温度的变化比)的数据。 随后,基于数据补偿元件的温度特性。
    • 75. 发明申请
    • MAGNETIC-SENSOR CONTROLLER, MAGNETISM MEASUREMENT APPARATUS, OFFSET SETTING METHOD, AND COMPUTER-READABLE MEDIUM ON WHICH OFFSET SETTING PROGRAM IS RECORDED
    • 磁传感器控制器,磁性测量装置,偏移设置方法以及记录偏置设置程序的计算机可读介质
    • US20070198209A1
    • 2007-08-23
    • US11677456
    • 2007-02-21
    • Hideki Sato
    • Hideki Sato
    • G01B15/00G06F19/00
    • G01C17/28G01C17/38
    • A magnetic-sensor controller includes an input section, a perpendicular-bisector calculation section, a storage section, and a setting section. The input section successively inputs a plurality of magnetic data sets successively output from a three-dimensional magnetic sensor. Each magnetic data includes three components. The perpendicular-bisector calculation section calculates, for each pair of two of the magnetic data sets, a perpendicular bisector of two points corresponding to the two magnetic data sets. The storage section stores a plurality of perpendicular bisectors. The setting section statistically approximates, by a single point, a region where the plurality of perpendicular bisectors stored in the storage section meet, and sets an offset of the magnetic data set on the basis of the single point. The magnetic-sensor controller enables accurate setting of an offset even when the magnetic field strength changes.
    • 磁传感器控制器包括输入部分,垂直平分线计算部分,存储部分和设置部分。 输入部依次输入从三维磁传感器连续输出的多个磁数据组。 每个磁数据包括三个组件。 垂直平分线计算部分对于每对两个磁数据集计算对应于两个磁数据集的两点的垂直二等分线。 存储部分存储多个垂直平分线。 设置部分通过单个点统计地近似存储在存储部分中的多个垂直平分线相遇的区域,并且基于单个点设置磁数据集的偏移。 即使当磁场强度变化时,磁传感器控制器也能够准确地设定偏移。
    • 76. 发明申请
    • Non-oxide ceramic having oxide layer on the surface thereof, method for production thereof and use thereof
    • 其表面具有氧化物层的非氧化物陶瓷,其制造方法及其用途
    • US20070161494A1
    • 2007-07-12
    • US10587327
    • 2005-01-21
    • Hiroyuki FukuyamaTakehiko YonedaMasao AriyukiTakeshi SunaoshiHideki Sato
    • Hiroyuki FukuyamaTakehiko YonedaMasao AriyukiTakeshi SunaoshiHideki Sato
    • C04B35/00B65D85/00
    • C04B41/009C04B41/5031C04B41/87H01L21/4807H01L23/15H01L2924/0002C04B41/0072C04B41/4519C04B35/581H01L2924/00
    • A non-oxide ceramics having improved performances and functions by forming a high-quality oxide film on the surface of a non-oxide ceramics such as aluminum nitride. The method for the formation of the non-oxide ceramics comprises the steps of: (1) providing a non-oxide ceramics; (2) introducing the non-oxide ceramics into a furnace and then regulating the atmosphere within the furnace so as to have an oxidizing gas content of not more than 0.5 mmol in terms of total number of moles of the oxidizing gas per m3 of the inside of the furnace; (3) heating the non-oxide ceramics to a temperature at or above a temperature, which is 300° C. below the oxidation start temperature of the non-oxide ceramics, while maintaining the low-oxidizing gas atmosphere and (4) bringing the non-oxide ceramics heated in the step (3) into contact with an oxidizing gas and then holding the non-oxide ceramics at a temperature above the oxidation start temperature of the non-oxide ceramics to form an oxide layer, and that, in the step (4), until at least two min. elapses after the arrival of the temperature at or above the oxidation start temperature after the start of the contact between the non-oxide ceramics and the oxidizing gas, the pressure or partial pressure of the oxidizing gas is maintained at not more than 50 kPa.
    • 通过在诸如氮化铝的非氧化物陶瓷的表面上形成高质量的氧化物膜而具有改进的性能和功能的非氧化物陶瓷。 形成非氧化物陶瓷的方法包括以下步骤:(1)提供非氧化物陶瓷; (2)将非氧化物陶瓷引入炉中,然后调节炉内的气氛,使得氧化气体含量以每立方米内的氧化气体的总摩尔数计不大于0.5mmol 的炉子 (3)在保持低氧化性气体气氛的同时,将非氧化物陶瓷的温度加热到低于非氧化物陶瓷的氧化开始温度300℃以下的温度,(4)使 在步骤(3)中加热的非氧化物陶瓷与氧化气体接触,然后将非氧化物陶瓷保持在高于非氧化物陶瓷的氧化开始温度的温度以形成氧化物层,并且在 步骤(4),直到至少两分钟。 在非氧化物陶瓷与氧化气体接触开始之后温度达到或高于氧化开始温度时,氧化气体的压力或分压保持在50kPa以下。
    • 77. 发明申请
    • Geomagnetic sensor and geomagnetic sensor correction method, temperature sensor and temperature sensor correction method, geomagnetism detection device
    • US20070136020A1
    • 2007-06-14
    • US11698154
    • 2007-01-26
    • Shoji YasuiMasayoshi OmuraMakoto KanekoHideki Sato
    • Shoji YasuiMasayoshi OmuraMakoto KanekoHideki Sato
    • G06F19/00
    • G01C17/38G01K13/00
    • With regard to the geomagnetic sensor 1, the control logic circuit 11 conducts control of the geomagnetic sensor 1. When the geomagnetic sensor 1 is installed in a cell phone device, the control logic circuit 11 reads the measurement values pertaining to the ambient magnetic field from the geomagnetic sensor circuit 12, obtains the offset value from the pertinent measurement values, and stores it in the fuse memory 13. At times of measurement by the geomagnetic sensor 1, the control logic circuit 11 reads the offset value from the fuse memory 13, and corrects the measurement values of the geomagnetic sensor 12 using the pertinent value. With regard to the temperature sensor 201, the control logic circuit 211 conducts control of the temperature sensor 201. During preparation of the temperature sensor 201, the control logic circuit 211 reads the result of measurement of the property pertaining to the ambient temperature from the temperature sensor circuit 212, obtains the initial value and correction value from the result, and stores the pertinent values in the fuse memory 213. At times of operation of the temperature sensor 201, the control logic circuit 211 reads the initial value and correction value from the fuse memory 213, and corrects the measurement values of the temperature sensor circuit 212 using the pertinent values. The correction coefficients a11-a22 of the magnetic sensors are measured during LSI shipment inspection. The correction data D1-D4 obtained from these correction coefficients a11-a22 are written into the fuse memory 315. The control circuit 308 inputs the detection outputs Sx and Sy of the magnetic sensors 310 and 311 to the internal register during geomagnetism detection. The correction data D1-D4 is read from the fuse memory 315. Detection outputs Sx and Sy are corrected using formulas (309) to (312).
    • 78. 发明申请
    • Geomagnetic sensor and geomagnetic sensor correction method, temperature sensor and temperature sensor correction method, geomagnetism detection device
    • US20070124096A1
    • 2007-05-31
    • US11698156
    • 2007-01-26
    • Shoji YasuiMasayoshi OmuraMakoto KanekoHideki Sato
    • Shoji YasuiMasayoshi OmuraMakoto KanekoHideki Sato
    • G01D18/00
    • G01K7/01G01C17/38
    • With regard to the geomagnetic sensor 1, the control logic circuit 11 conducts control of the geomagnetic sensor 1. When the geomagnetic sensor 1 is installed in a cell phone device, the control logic circuit 11 reads the measurement values pertaining to the ambient magnetic field from the geomagnetic sensor circuit 12, obtains the offset value from the pertinent measurement values, and stores it in the fuse memory 13. At times of measurement by the geomagnetic sensor 1, the control logic circuit 11 reads the offset value from the fuse memory 13, and corrects the measurement values of the geomagnetic sensor 12 using the pertinent value. With regard to the temperature sensor 201, the control logic circuit 211 conducts control of the temperature sensor 201. During preparation of the temperature sensor 201, the control logic circuit 211 reads the result of measurement of the property pertaining to the ambient temperature from the temperature sensor circuit 212, obtains the initial value and correction value from the result, and stores the pertinent values in the fuse memory 213. At times of operation of the temperature sensor 201, the control logic circuit 211 reads the initial value and correction value from the fuse memory 213, and corrects the measurement values of the temperature sensor circuit 212 using the pertinent values. The correction coefficients a11-a22 of the magnetic sensors are measured during LSI shipment inspection. The correction data D1-D4 obtained from these correction coefficients a11-a22 are written into the fuse memory 315. The control circuit 308 inputs the detection outputs Sx and Sy of the magnetic sensors 310 and 311 to the internal register during geomagnetism detection. The correction data D1-D4 is read from the fuse memory 315. Detection outputs Sx and Sy are corrected using formulas (309) to (312).
    • 80. 发明申请
    • Apparatus and method for detecting azimuth and inclination angel, program for detecting the same, and portable terminal device for detecting the same
    • 用于检测方位和倾角的装置和方法,用于检测方位和倾斜角度的装置和方法,以及用于检测方位角的便携式终端装置
    • US20070000140A1
    • 2007-01-04
    • US11479970
    • 2006-06-30
    • Hideki Sato
    • Hideki Sato
    • G01C17/00
    • G01C17/38G01C21/20
    • In an azimuth/inclination-angle detection apparatus, a measurement data obtaining unit obtains first and second measurement data sets g and h from acceleration and magnetic sensors, respectively. A first computation unit calculates an azimuth α0, an elevation angle β0, and a geomagnetism depression angle θ0 from the measurement data sets g and h. An averaging unit accumulates and averages the geomagnetism depression angle θ0 so as to obtain a value to be used as a geomagnetism depression angle θ. A second computation unit calculates an azimuth α and an elevation angle β from the second measurement data set h and the geomagnetism depression angle θ. When a plurality of solutions exist, they are stored as candidates (α1, β1) and (α2, β2). A selection unit selects a detection value (α, β) from the candidates (α1, β1) and (α2, β2) with reference to the above-described values α0 and β0 serving as reference values.
    • 在方位角/倾斜角检测装置中,测量数据获取单元分别从加速度和磁性传感器获得第一和第二测量数据集g和h。 第一计算单元从测量数据集g和h计算方位角α0,仰角β0和地磁抑制角θ0。 平均单元积累并平均地磁俯角θ0,以获得要用作地磁俯角θ的值。 第二计算单元计算来自第二测量数据集h和地磁俯角θ的方位角α和仰角β。 当多个解决方案存在时,它们被存储为候选(α1,β1)和(α2,β2)。 选择单元参照作为参考值的上述值α0和β0从候选(α1,β1)和(α2,β2)中选择检测值(α,β)。