会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 62. 发明授权
    • Apparatus for projecting a reduced image of a photomask using a schwarzschild objective
    • 用于使用施瓦辛目标投影光掩模的缩小图像的装置
    • US07331676B2
    • 2008-02-19
    • US11348185
    • 2006-02-06
    • Joerg FerberHenning Schmidt
    • Joerg FerberHenning Schmidt
    • G03B21/14
    • G03F7/70108G03F7/70225G03F7/70233
    • An optical system for projecting an image of a photomask on a substrate, using a Schwarzschild objective includes an excimer laser, beam shaping optics for shaping a laser beam from the laser and a beam-dividing prism. The beam-dividing prism has a dividing-face including four facets inclined at an angle to each other. The four facets divide the shaped beam into four beam-portions propagating at an angle to the system axis. The beam-portions overlap at the photomask and mutually diverge into the entrance aperture in the concave mirror of the Schwarzschild objective such that all of the light in the beam portions is incident on the convex mirror of the objective in an annular zone outside of the central obscuration zone of the convex mirror. This essentially eliminates transfer losses normally caused by this obscuration zone.
    • 用于使用Schwarzschild物镜将光掩模图像投影在基板上的光学系统包括准分子激光器,用于使来自激光器的激光束成形的光束整形光学元件和分束棱镜。 分束棱镜具有包括相互倾斜的四个小面的分割面。 四个小面将成形的光束分成与系统轴成一定角度传播的四个光束部分。 光束部分在光掩模处重叠并且相互分开进入施瓦茨物镜的凹面镜中的入口孔,使得光束部分中的所有光在中心的外部的环形区域中入射到物镜的凸面镜上 凸面镜的遮蔽区。 这基本上消除了通常由该遮蔽区引起的传输损耗。
    • 65. 发明授权
    • High numerical aperture projection system and method for microlithography
    • 高数值孔径投影系统和微光刻法
    • US07317583B2
    • 2008-01-08
    • US10224485
    • 2002-08-21
    • Mark L OskotskyStanislav Smirnov
    • Mark L OskotskyStanislav Smirnov
    • G02B17/08
    • G03F7/70225G02B17/08G02B17/0892G03F7/70275
    • The present invention relates to a high numerical aperture exposure system having a wafer. The exposure system in the present invention includes a beam-splitter, a reticle, a reticle optical group, where the reticle optical group is placed between the reticle and the beam-splitter, a concave mirror, a concave mirror optical group, where the concave mirror optical group is placed between the concave mirror and the beam-splitter, a fold mirror, where the fold mirror is placed between the beam-splitter and the wafer, and a wafer optical group, where the wafer optical group is placed between the beam-splitter and the wafer. In the present invention, a beam of light is directed through the reticle and the reticle optical group to the beam-splitter, then it is reflected by the beam-splitter onto the concave mirror. Concave mirror reflects the light onto the fold mirror through the beam-splitter. Fold mirror reflects the light onto the wafer through the wafer optical group. The present invention forms an intermediate image between the fold mirror and the wafer optical group. Furthermore, in an embodiment an aperture stop can be placed between the concave mirror optical group and the concave mirror.
    • 本发明涉及具有晶片的高数值孔径曝光系统。 本发明的曝光系统包括光束分离器,光罩,光罩光学组,其中标线片光学组置于光罩和分光器之间,凹面镜,凹面镜光学组,其中凹面 反射镜光学组被放置在凹面镜和分光器之间,折叠镜放置在分束器和晶片之间的折叠镜和晶片光学组,其中晶片光学组被放置在光束 分配器和晶圆。 在本发明中,光束被引导通过光罩和光掩模光学组到分束器,然后被分束器反射到凹面镜上。 凹面镜通过分光镜将光反射到折叠镜上。 折叠镜通过晶片光学组将光反射到晶片上。 本发明在折射镜和晶片光学组之间形成中间图像。 此外,在一个实施例中,可以在凹面镜光学组和凹面镜之间设置孔径光阑。
    • 67. 发明申请
    • Exposure apparatus, exposure method, and device manufacturing method
    • 曝光装置,曝光方法和装置制造方法
    • US20070291243A1
    • 2007-12-20
    • US11785715
    • 2007-04-19
    • Kousuke Suzuki
    • Kousuke Suzuki
    • G03B27/52
    • G03F7/70875G03F7/70225G03F7/70258G03F7/70783
    • An exposure apparatus includes a projection optical system, which projects a pattern of a mask onto a prescribed exposure area on a substrate at a prescribed projection magnification. The optical axis center of the projection optical system is set to a position different from that of the center of the projection area onto which the pattern is projected. The exposure apparatus further includes a magnification modification device, which modifies the projection magnification of the projection optical system; a calculation device, which calculates a shift length of the center of the projection area associated with modification of the projection magnification; and a correction device, which corrects the position information of the exposure area based on the shift length of the center of the projection area.
    • 曝光装置包括投影光学系统,其以规定的投影倍率将掩模的图案投影到基板上的规定的曝光区域上。 将投影光学系统的光轴中心设定为与投影图案的投影区域的中心不同的位置。 所述曝光装置还具备能够改变所述投影光学系统的投影倍率的倍率变更装置, 计算装置,其计算与投影倍率的修改相关联的投影区域的中心的移动长度; 以及校正装置,其基于投影区域的中心的移动长度校正曝光区域的位置信息。
    • 70. 发明授权
    • Optical reduction system with control of illumination polarization
    • 具有照明偏振控制的光学还原系统
    • US07239446B2
    • 2007-07-03
    • US10730947
    • 2003-12-10
    • Justin L. Kreuzer
    • Justin L. Kreuzer
    • G02B27/28
    • G02B17/0892G02B5/3083G02B17/08G02B27/286G03F7/70225G03F7/70358G03F7/70566G03F7/70966
    • An optical reduction system with polarization dose sensitive output for use in the photolithographic manufacture of semiconductor devices having variable compensation for reticle retardation before the long conjugate end. The variable compensation component(s) before the reticle provides accurate adjustment of the polarization state at or near the reticle. The variable compensation components can be variable wave plates, layered wave plates, opposing mirrors, a Berek's compensator and/or a Soleil-Babinet compensator. The catadioptric optical reduction system provides a relatively high numerical aperture of 0.7 capable of patterning features smaller than 0.25 microns over a 26 mm×5 mm field. The optical reduction system is thereby well adapted to a step and scan microlithographic exposure tool as used in semiconductor manufacturing. Several other embodiments combine elements of different refracting power to widen the spectral bandwidth which can be achieved.
    • 一种具有极化剂量敏感输出的光学还原系统,用于在长共轭末端之前具有对光掩膜延迟的可变补偿的半导体器件的光刻制造。 掩模版之前的可变补偿分量可以精确调整光罩处或附近的偏振状态。 可变补偿分量可以是可变波片,分层波片,相对镜,Berek补偿器和/或Soleil-Babinet补偿器。 反折射光学还原系统提供了相对较高的数值孔径0.7,能够在26mm×5mm的场上图形化小于0.25微米的特征。 因此,光学还原系统很好地适用于在半导体制造中使用的步进和扫描微光刻曝光工具。 其它几个实施例组合了不同屈光力的元件以扩大可实现的光谱带宽。