会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 62. 发明授权
    • Process for passivating the semiconductor-dielectric interface of a MOS device and MOS device formed thereby
    • 钝化MOS器件的半导体介质接口和由此形成的MOS器件的工艺
    • US06803266B2
    • 2004-10-12
    • US10249184
    • 2003-03-20
    • Paul M. SolomonDouglas A. BuchananEduard A. CartierKathryn W. GuariniFenton R. McFeelyHuiling ShangJohn J. Yourkas
    • Paul M. SolomonDouglas A. BuchananEduard A. CartierKathryn W. GuariniFenton R. McFeelyHuiling ShangJohn J. Yourkas
    • H01L21336
    • H01L29/517H01L21/263H01L21/28079H01L29/495Y10S438/91
    • A process for passivating the semiconductor-dielectric interface of a MOS structure to reduce the interface state density to a very low level. A particular example is a MOSFET having a tungsten electrode that in the past has prevented passivation of the underlying semiconductor-dielectric interface to an extent sufficient to reduce the interface state density to less than 5×1010/cm2−eV. Though substantially impervious to molecular hydrogen, thin tungsten layers are shown to be pervious to atomic hydrogen, enabling atomic hydrogen to be diffused through a tungsten electrode into an underlying semiconductor-dielectric interface. Three general approaches are encompassed: forming an aluminum-tungsten electrode stack in the presence of hydrogen so as to store atomic hydrogen between the tungsten and aluminum layers, followed by an anneal to cause the atomic hydrogen to diffuse through the tungsten layer and into the interface; subjecting a tungsten electrode to hydrogen plasma, during which atomic hydrogen diffuses through the electrode and into the semiconductor-dielectric interface; and implanting atomic hydrogen into tungsten electrode, followed by an anneal to cause the atomic hydrogen to diffuse through the electrode and into the semiconductor-dielectric interface.
    • 一种用于钝化MOS结构的半导体 - 电介质界面以将界面态密度降低到非常低的水平的方法。 具体的示例是具有钨电极的MOSFET,其过去已经阻止下面的半导体 - 电介质界面的钝化达到足以将界面态密度降低到小于5×10 10 / cm 2 -eV的程度。 虽然基本上不透分子氢,但是显示出薄钨层可以透过原子氢,使原子氢能够通过钨电极扩散到下面的半导体 - 电介质界面。 包括三种一般方法:在氢的存在下形成铝 - 钨电极堆叠,以便在钨和铝层之间存储原子氢,随后进行退火,使原子氢扩散通过钨层并进入界面 ; 使钨电极经受氢等离子体,其中原子氢通过电极扩散并进入半导体 - 电介质界面; 并将原子氢注入钨电极中,随后进行退火,使原子氢扩散通过电极并进入半导体 - 电介质界面。
    • 67. 发明授权
    • Enhancement and depletion mode selection layer for field effect
transistor
    • 场效应晶体管的增强和耗尽模式选择层
    • US4616242A
    • 1986-10-07
    • US731822
    • 1985-05-08
    • Paul M. SolomonSteven L. Wright
    • Paul M. SolomonSteven L. Wright
    • H01L29/812H01L21/338H01L21/8222H01L27/06H01L27/082H01L27/095H01L29/10H01L29/778H01L29/64H01L29/80
    • H01L27/0605H01L29/1029H01L29/1075H01L29/7786H01L29/7787
    • A field effect transistor structure suitable for use in an array of such structures disposed on a common substrate (14) is formed with a source terminal (22), a drain (24) terminal, and a gate terminal (26) upon an upper surface of a semiconductor chip. The chip includes a first layer (18) and a second layer (20), the first layer being grown epitaxially upon the second layer. The first layer forms a part of the gate terminal and the second layer includes a charge conduction channel coupling the source region and the drain region. A pocket layer (16) is disposed in the second layer beneath the terminals of the transistor structure and is doped with either an donor dopant or an acceptor dopant for altering the electric field at the conduction channel to insert electrons or remove electrons therefrom so as to convert an operating mode from either an enhancement mode to a depletion mode or from a depletion mode to an enchancement mode. A substrate with a terminal on the backside thereof may be placed contiguous the bottom of said second layer, the back terminal being applied to a negative source of voltage for a transistor structure of n-channel format. The semiconductor material of the chip is a obtained from compounds of elements of the groups III and V of the periodic table.
    • 适用于布置在公共衬底(14)上的这种结构阵列中的场效应晶体管结构形成有源极端子(22),漏极(24)端子和栅极端子(26) 的半导体芯片。 芯片包括第一层(18)和第二层(20),第一层在第二层上外延生长。 第一层形成栅极端子的一部分,第二层包括耦合源极区和漏极区的电荷传导沟道。 袋状层(16)设置在晶体管结构的端子下方的第二层中,并且掺杂有施主掺杂剂或受体掺杂剂,用于改变导电沟道处的电场以插入电子或从其中去除电子,以便 将操作模式从增强模式转换为耗尽模式或从耗尽模式转换到增强模式。 在其背面具有端子的衬底可以邻近所述第二层的底部放置,所述后端子被施加到用于n沟道格式的晶体管结构的负电压源。 芯片的半导体材料是从元素周期表第III族和第Ⅴ族元素的化合物得到的。
    • 70. 发明授权
    • Solid state klystron
    • 固态速调管
    • US08614436B2
    • 2013-12-24
    • US13603110
    • 2012-09-04
    • Paul M. Solomon
    • Paul M. Solomon
    • H01L29/06
    • H01J25/10B82Y10/00
    • A solid state Klystron structure is fabricated by forming a source contact and a drain contact to both ends of a conducting wire and by forming a bias gate and a signal gate on the conducting wire. The conducting wire may be at least one carbon nanotube or at least one semiconductor wire with long ballistic mean free paths. By applying a signal at a frequency that corresponds to an integer multiple of the transit time of the ballistic carriers between adjacent fingers of the signal gate, the carriers are bunched within the conducting wire, thus amplifying the current through the solid state Klystron at a frequency of the signal to the signal gate, thus achieving a power gain.
    • 通过在导线的两端形成源极接触和漏极接触并且在导线上形成偏置栅极和信号栅极来制造固态速调管结构。 导线可以是至少一个碳纳米管或具有长的弹道平均自由路径的至少一个半导体线。 通过以对应于信号栅极的相邻指状物之间的弹道载体的渡越时间的整数倍的频率施加信号,载流子在导线内聚束,从而以一定频率放大通过固态速调管的电流 信号到信号门,从而实现功率增益。