会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 63. 发明授权
    • Method to manufacture reduced mechanical stress electrodes and microcavity plasma device arrays
    • 制造减小的机械应力电极和微腔等离子体装置阵列的方法
    • US08535110B2
    • 2013-09-17
    • US13425214
    • 2012-03-20
    • J. Gary EdenSung-Jin Park
    • J. Gary EdenSung-Jin Park
    • H01J17/04
    • H01J11/18C25D11/26
    • In a preferred method of formation embodiment, a thin metal foil or film is obtained or formed with microcavities (such as through holes). The foil or film is anodized symmetrically so as to form a metal-oxide film on the surface of the foil and on the walls of the microcavities. One or more self-patterned metal electrodes are automatically formed and simultaneously buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity, and electrodes for adjacent microcavities can be isolated or connected. If the microcavity is cylindrical, the electrodes form as rings around each cavity.
    • 在优选的形成实施方案中,由微孔(例如通孔)获得或形成薄金属箔或膜。 对称地对箔或膜进行阳极氧化,以在箔的表面和微腔的壁上形成金属氧化物膜。 一个或多个自图形金属电极自动形成并同时埋在由阳极氧化工艺产生的金属氧化物中。 电极在围绕每个微腔的封闭圆周中形成,并且用于相邻微腔的电极可被隔离或连接。 如果微腔是圆柱形的,则电极形成为围绕每个空腔的环。
    • 64. 发明授权
    • Microcavity plasma devices with non-uniform cross-section microcavities
    • 具有非均匀横截面微腔的微腔等离子体装置
    • US08456086B2
    • 2013-06-04
    • US12682941
    • 2008-10-27
    • J. Gary EdenSung-Jin ParkKwang SooAndrew J. Price
    • J. Gary EdenSung-Jin ParkKwang SooAndrew J. Price
    • H01J17/49
    • H01J11/18C25D11/12C25D11/26H01J9/241H01J61/82
    • An embodiment of the invention IS an array of microcavity plasma devices The array includes a first metal film electrode with a plurality of non-uniform cross-section microcavities therein that are encapsulated in oxide A second electrode is a thin metal foil encapsulated in oxide that is bonded to the first electrode A packaging layer contains gas or vapor in the non-uniform cross-section microcavities To make such device, photoresist is patterned to encapsulate the anodized foil or film except on a top surface at desired positions of microcavities A second anodization or electrochemical etching is conducted to form the non-uniform cross-section sidewall microcavities cavities After removing photoresist and metal oxide, a final anodization lines the walls of the microcavities with metal oxide and fully encapsulates the metal electrodes with metal oxide.
    • 本发明的实施例是微腔等离子体装置的阵列。阵列包括其中封装在氧化物中的多个非均匀横截面微腔的第一金属膜电极。第二电极是封装在氧化物中的薄金属箔, 键合到第一电极包装层在不均匀的横截面微腔中包含气体或蒸汽。为了制造这种器件,将光致抗蚀剂图案化以将阳极氧化的箔或膜除外在微腔的所需位置处的顶表面上。第二阳极氧化或 进行电化学蚀刻以形成不均匀的横截面侧壁微腔在去除光致抗蚀剂和金属氧化物之后,最终的阳极氧化用金属氧化物引导微腔的壁,并用金属氧化物完全封装金属电极。
    • 65. 发明授权
    • Ellipsoidal microcavity plasma devices and powder blasting formation
    • 椭球微腔等离子体装置和粉末爆破形成
    • US08179032B2
    • 2012-05-15
    • US12235796
    • 2008-09-23
    • J. Gary EdenSung-Jin ParkSeung Hoon Sung
    • J. Gary EdenSung-Jin ParkSeung Hoon Sung
    • H01J1/00H01J1/88
    • H01J65/046H01J9/241H01J11/18
    • The invention provides microcavity plasma devices and arrays that are formed in layers that also seal the plasma medium, i.e., gas(es) and/or vapors. No separate packaging layers are required and additional packaging can be omitted if it is desirable to do so. A preferred microcavity plasma device includes first and second thin layers that are joined together. A half ellipsoid microcavity or plurality of half ellipsoid microcavities is defined in one or both of the first and second thin layers, and electrodes are arranged with respect to the microcavity to excite a plasma within said microcavities upon application of a predetermined voltage to the electrodes. A method for forming a microcavity plasma device having a plurality of half or full ellipsoid microcavities in one or both of first and second thin layers is also provided by a preferred embodiment. The method includes defining a pattern of protective polymer on the first thin layer. Powder blasting forms half ellipsoid microcavities in the first thin layer. The second thin layer is joined to the first layer. The patterning can be conducted lithographically or can be conduced with a simple screen.
    • 本发明提供了形成为也密封等离子体介质即气体和/或蒸汽的层的微腔等离子体装置和阵列。 不需要单独的包装层,如果要这样做,可以省略额外的包装。 优选的微腔等离子体装置包括连接在一起的第一和第二薄层。 半椭圆形微腔或多个半椭圆形微腔被限定在第一和第二薄层中的一个或两个中,并且相对于微腔布置电极,以在对电极施加预定电压时在所述微腔内激发等离子体。 优选实施例也提供了一种在第一和第二薄层中的一个或两个中形成具有多个半或全椭圆形微腔的微腔等离子体装置的方法。 该方法包括在第一薄层上限定保护性聚合物的图案。 粉末喷射在第一薄层中形成半椭圆形微腔。 第二薄层连接到第一层。 图案化可以光刻地进行,或者可以用简单的屏幕进行。
    • 66. 发明授权
    • Arrays of microcavity plasma devices and electrodes with reduced mechanical stress
    • 具有降低机械应力的微腔等离子体器件和电极的阵列
    • US08159134B2
    • 2012-04-17
    • US12152550
    • 2008-05-15
    • J. Gary EdenSung-Jin Park
    • J. Gary EdenSung-Jin Park
    • H01J17/04
    • H01J11/18C25D11/26
    • A preferred embodiment low stress electrode and a preferred array of microcavity plasma devices of the invention include a plurality of thin metal first electrodes and stress reduction structures and/or geometries designed to promote the flatness during and after processing. The first electrodes are buried in a thin metal oxide layer which protects the electrodes from the plasma in the microcavities. In embodiments of the invention, some or all of the electrodes are connected. Patterns of connections in a one- or two-dimensional array of microcavities can be defined. In preferred embodiments, the first electrodes comprise circumferential electrodes that surround individual microcavities. A second thin layer having a buried, second electrode is bonded to the first thin layer. A packaging layer, e.g., a thin glass or plastic layer, seals the discharge medium (a gas or vapor, or a combination of the two) into the microcavities. In a preferred methods of formation of arrays of microcavity plasma devices or electrodes, a thin metal foil or film is symmetrically anodized and formed with a stress reduction geometry and/or structures.
    • 优选实施例本发明的低应力电极和微腔等离子体器件的优选阵列包括多个薄金属第一电极和设计用于在加工期间和之后促进平坦度的应力减小结构和/或几何形状。 第一电极被埋在薄的金属氧化物层中,其在微腔中保护电极免受等离子体的影响。 在本发明的实施例中,部分或全部电极被连接。 可以定义一个或二维微腔阵列中的连接模式。 在优选实施例中,第一电极包括围绕各个微腔的圆周电极。 具有埋置的第二电极的第二薄层被结合到第一薄层。 诸如薄玻璃或塑料层的包装层将排放介质(气体或蒸气,或两者的组合)密封到微腔中。 在形成微腔等离子体器件或电极的阵列的优选方法中,薄金属箔或膜对称地阳极氧化并且具有应力减小几何形状和/或结构。
    • 67. 发明授权
    • Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method
    • 埋置圆周电极微腔等离子体器件阵列,电气互连和形成方法
    • US08004017B2
    • 2011-08-23
    • US11880698
    • 2007-07-24
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • H01J17/04H01J17/49
    • H01J11/18G09F9/313
    • A preferred embodiment microcavity plasma device array of the invention includes a plurality of first metal circumferential metal electrodes that surround microcavities in the device. The first circumferential electrodes are buried in a metal oxide layer and surround the microcavities in a plane transverse to the microcavity axis, while being protected from plasma in the microcavities by the metal oxide. In embodiments of the invention, the circumferential electrodes can be connected in patterns. A second electrode(s) is arranged so as to be isolated from said first electrodes by said first metal oxide layer. In some embodiments, the second electrode(s) is in a second layer, and in other embodiments the second electrode(s) is also within the first metal oxide layer. A containing layer, e.g., a thin layer of glass, quartz, or plastic, seals the discharge medium (plasma) into the microcavities. In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.
    • 本发明的优选实施例微腔等离子体器件阵列包括围绕器件中的微腔的多个第一金属周向金属电极。 第一圆周电极被埋在金属氧化物层中,并且在垂直于微腔轴线的平面中围绕微腔,同时通过金属氧化物保护微腔中的等离子体。 在本发明的实施例中,圆周电极可以以图案连接。 第二电极被布置成通过所述第一金属氧化物层与所述第一电极隔离。 在一些实施例中,第二电极处于第二层,在其它实施例中,第二电极也在第一金属氧化物层内。 含有层,例如玻璃,石英或塑料的薄层,将放电介质(等离子体)密封成微腔。 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。
    • 68. 发明申请
    • MICROCAVITY PLASMA DEVICES WITH NON-UNIFORM CROSS-SECTION MICROCAVITIES
    • 具有非均匀性交叉显微镜的MICROCAVITY等离子体装置
    • US20110109224A1
    • 2011-05-12
    • US12682941
    • 2008-10-27
    • J. Gary EdenSung-Jin ParkKwang SooAndrew J. Price
    • J. Gary EdenSung-Jin ParkKwang SooAndrew J. Price
    • H01J17/49H01J9/24
    • H01J11/18C25D11/12C25D11/26H01J9/241H01J61/82
    • An embodiment of the invention IS an array of microcavity plasma devices The array includes a first metal film electrode with a plurality of non-uniform cross-section microcavities therein that are encapsulated in oxide A second electrode is a thin metal foil encapsulated in oxide that is bonded to the first electrode A packaging layer contains gas or vapor in the non-uniform cross-section microcavities To make such device, photoresist is patterned to encapsulate the anodized foil or film except on a top surface at desired positions of microcavities A second anodization or electrochemical etching is conducted to form the non-uniform cross-section sidewall microcavities cavities After removing photoresist and metal oxide, a final anodization lines the walls of the microcavities with metal oxide and fully encapsulates the metal electrodes with metal oxide
    • 本发明的实施例是微腔等离子体装置的阵列。阵列包括其中封装在氧化物中的多个非均匀横截面微腔的第一金属膜电极。第二电极是封装在氧化物中的薄金属箔, 键合到第一电极包装层在不均匀的横截面微腔中包含气体或蒸汽。为了制造这种器件,将光致抗蚀剂图案化以将阳极氧化的箔或膜除外在微腔的所需位置处的顶表面上。第二阳极氧化或 进行电化学蚀刻以形成不均匀的横截面侧壁微腔在除去光致抗蚀剂和金属氧化物之后,最后的阳极氧化用金属氧化物引导微腔的壁,并用金属氧化物完全封装金属电极
    • 69. 发明申请
    • ELECTRON INJECTION-CONTROLLED MICROCAVITY PLASMA DEVICE AND ARRAYS
    • 电子注入控制微波等离子体装置和阵列
    • US20100289413A1
    • 2010-11-18
    • US12682974
    • 2008-10-27
    • J. Gary EdenKuo-Feng Chen
    • J. Gary EdenKuo-Feng Chen
    • H05B41/36H01J17/48
    • H01J11/18H01J61/82
    • An embodiment of the invention is a microcavity plasma device that can be controlled by a low voltage electron emitter. The microcavity plasma device includes driving electrodes disposed proximate to a microcavity and arranged to contribute to generation of plasma in the microcavity upon application of a driving voltage. An electron emitter is arranged to emit electrons into the microcavity upon application of a control voltage. The electron emitter is an electron source having an insulator layer defining a tunneling region. The microplasma itself can serve as a second electrode necessary to energize the electron emitter. While a voltage comparable to previous microcavity plasma devices is still imposed across the microcavity plasma devices, control of the devices can be accomplished at high speeds and with a small voltage, e.g., about 5V to 30V in preferred embodiments.
    • 本发明的一个实施例是可以由低电压电子发射器控制的微腔等离子体装置。 微腔等离子体装置包括靠近微腔设置的驱动电极,并布置成有助于在施加驱动电压时在微腔中产生等离子体。 电子发射器布置成在施加控制电压时将电子发射到微腔中。 电子发射体是具有限定隧道区域的绝缘体层的电子源。 微质体本身可以用作为电子发射体通电所必需的第二电极。 虽然与先前的微腔等离子体器件相当的电压仍然施加在微腔等离子体器件之间,但是在优选实施例中,器件的控制可以在高速和小电压下实现,例如约5V至30V。