会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明申请
    • REAGENT PREPARING DEVICE AND SPECIMEN PROCESSING SYSTEM
    • 试剂制备装置和样品处理系统
    • US20100247383A1
    • 2010-09-30
    • US12732964
    • 2010-03-26
    • Koichi OkuboNoriyuki NakanishiMasahiko OguroTomoyuki AsaharaTakayuki Nakajima
    • Koichi OkuboNoriyuki NakanishiMasahiko OguroTomoyuki AsaharaTakayuki Nakajima
    • G01N27/417
    • G01N27/06G01N35/00594G01N35/00693G01N2035/00673Y10T436/25625
    • A reagent preparing device capable of supplying a predetermined reagent, which includes a first liquid and a second liquid different from the first liquid, to a measurement section for measuring a specimen using the reagent, comprising: a reagent preparing section for preparing the predetermined reagent; a characteristic measurement device for measuring characteristic of the reagent prepared by the reagent preparing section; and a controller configured for performing operations comprising, controlling the supply of reagent prepared by the reagent preparing section to the measurement section according to the measurement result by the characteristic measurement device, and calibrating the characteristic measurement device based on a known characteristic value of a standard liquid having the known characteristic value and a measurement result obtained by measuring the characteristic of the standard liquid by the characteristic measurement device, is disclosed. A specimen processing system is also disclosed.
    • 一种试剂调制装置,其能够将包含第一液体和与第一液体不同的第二液体的规定试剂供给到使用试剂测定试样的测定部,其特征在于,包括:准备所述试剂的试剂调制部; 用于测量由所述试剂调制部制备的试剂的特性的特征测量装置; 以及控制器,其被配置为执行以下操作,所述控制器包括:根据所述特性测量装置的测量结果,控制向所述测量部分供应由所述试剂调制部件准备的试剂,并且基于标准的已知特征值校准所述特性测量装置 公开了具有已知特征值的液体和通过特征测量装置测量标准液体的特性而获得的测量结果。 还公开了一种样品处理系统。
    • 53. 发明授权
    • Blood analysis apparatus and blood analysis method
    • 血液分析仪器及血液分析方法
    • US07678577B2
    • 2010-03-16
    • US11659599
    • 2005-08-09
    • Yasuhiro HoriikeAkio Oki
    • Yasuhiro HoriikeAkio Oki
    • G01N9/30B01D21/00B01D21/26B01L3/02B01L11/00B01L3/00B01L9/00G01N21/00
    • B01L3/502753A61B5/150022A61B5/150213A61B5/150221A61B5/150389A61B5/150503A61B5/15142A61B5/15186B01L2200/14B01L2200/148B01L2300/0645B01L2300/0816B01L2300/0864B01L2400/0409G01N27/4163G01N35/00693G01N2035/00495Y10T436/111666
    • A corpuscle/plasma separating part is disposed at the lower end of the substrate, and a sensor part connected to the corpuscle/plasma separating part is disposed at the upper end of the substrate, with a calibration solution reservoir being disposed on the lower side of the sensor part, and a calibration solution waste reservoir being disposed on the upper side of the sensor part. A first centrifugal axis is located upper to the corpuscle fraction storing part and lower to the plasma fraction storing part of the corpuscle/plasma separating part, while a second centrifugal axis is located within or close to the sensor part. Conveyance and discharge of the calibration solution can be carried out by performing centrifugation around the first centrifugal axis which is distant from the sensor part at a low speed of rotation, so that the centrifugal force exerted on the sensors would be small. During the centrifuge operation at a high speed of rotation for the separation of blood corpuscles, centrifugation can be performed around the second centrifugal axis so that the centrifugal force exerted on the sensors is small. Centrifuge operation allows separation of the blood corpuscles and blood plasma, and conveyance of the blood plasma and the calibration solution, as well as certain discharge of the calibration solution from the sensors, thereby allowing precise analysis. Any damage in the sensors due to strong centrifugal force during the separation of blood corpuscles and blood plasma can be prevented.
    • 微粒/等离子体分离部设置在基板的下端,并且连接到微粒/等离子体分离部的传感器部分设置在基板的上端,校准溶液储存器设置在基板的下侧 传感器部分和校准溶液废液储存器设置在传感器部分的上侧。 第一离心轴位于微粒分数存储部的上方,并且位于小体/等离子体分离部的等离子体部分存储部的上方,而第二离心轴位于传感器部内或靠近传感器部。 校准溶液的输送和排出可以通过围绕离开传感器部分的低速旋转的第一离心轴进行离心而进行,使得施加在传感器上的离心力将变小。 在用于分离血球的高速旋转离心机操作期间,可以围绕第二离心轴进行离心,使得施加在传感器上的离心力小。 离心机操作允许血细胞和血浆分离,血浆和校正溶液的输送,以及校准溶液从传感器中的一定排放,从而允许精确的分析。 可以防止在分离血液和血浆期间强力离心力导致的传感器损伤。
    • 56. 发明申请
    • AUTOMATIC ANALYZER
    • 自动分析仪
    • US20080219887A1
    • 2008-09-11
    • US12038389
    • 2008-02-27
    • Masashi Akutsu
    • Masashi Akutsu
    • G01N35/10
    • G01N35/00712G01N35/00623G01N35/00693G01N2001/2893Y10T436/10
    • An automatic analyzer is capable of performing analysis of a precision control sample in response to an external factor to alleviate the burden on the operator and surely performing precision control at appropriate timing at which precision control must be performed, thereby allowing automatic maintenance of the measurement precision. Analysis of a precision control sample is performed by creating an analysis request for the internally held precision control sample and then transferring the precision control sample in response to an external factor occurring, for example, when a calibrator is inputted in the analyzer, the number of remaining reagents under analysis satisfies a predetermined condition (becomes zero or falls below a specified value), the date changes, a specified time runs out, the operator is changed, the number of analyzed samples exceeds a specified value, a specified time period has elapsed, a new reagent is registered, a measurement failure is detected, etc.
    • 自动分析仪能够根据外部因素进行精密控制样品的分析,以减轻操作者的负担,并且必须在必须进行精度控制的适当定时进行精度控制,从而允许自动维持测量精度 。 通过对内部保持的精密控制样本生成分析请求,然后响应于外部因素发生,传送精度控制样本,例如当校准器输入到分析仪中时,进行精度控制样本的分析, 待分析的试剂满足预定条件(变为零或低于规定值),日期变化,指定时间用完,操作者变更,分析样品数超过规定值,经过规定时间 ,登记新试剂,检测出测定失败等。
    • 57. 发明授权
    • Method for satisfying certification requirements and verifying the integrity of structural health management systems
    • 满足认证要求和验证结构健康管理体系完整性的方法
    • US07366627B2
    • 2008-04-29
    • US11142038
    • 2005-05-31
    • Grant A. GordonNicholas J. WiltJoseph J. Nutaro
    • Grant A. GordonNicholas J. WiltJoseph J. Nutaro
    • G06F19/00
    • G01M5/00G01N35/00693G01N35/00712
    • A method is disclosed wherein a plurality of sensors mounted on a structure, a baseline data set for each of the plurality of sensors and a calibration procedure verify the integrity of a structural health management system. Initially a baseline data set is established. Before performing the structural health assessment a calibration-in data set for each of the plurality of sensors is collected. The calibration-in data set is compared to the baseline data set for each sensor of the plurality of sensors. If the calibration-in data set and the baseline data set match then a structure characterization is performed. If the calibration-in data set and the baseline data set do not match, a calibration-out procedure is performed to generate a calibration-out data set. If the calibration-out data set and the calibration-in data sets match, then a determination is made that the structural health management system was working.
    • 公开了一种方法,其中安装在结构上的多个传感器,用于多个传感器中的每一个的基准数据集和校准过程来验证结构健康管理系统的完整性。 最初建立了一个基准数据集。 在执行结构健康评估之前,收集多个传感器中的每一个的校准数据集。 将校准数据集与多个传感器中的每个传感器的基准数据集进行比较。 如果校准数据集和基线数据集匹配,则执行结构表征。 如果校准数据集和基线数据集不匹配,则执行校准退出过程以生成校准数据集。 如果校准数据组和校准数据组匹配,则确定结构健康管理系统正在工作。
    • 59. 发明申请
    • Automatic analyzer
    • 自动分析仪
    • US20080019868A1
    • 2008-01-24
    • US11826761
    • 2007-07-18
    • Keiji OkumotoMasahiko TakaharaYoshifumi Okajima
    • Keiji OkumotoMasahiko TakaharaYoshifumi Okajima
    • G01N35/10G01N21/01
    • G01N35/025G01N21/31G01N35/00693Y10T436/2575
    • An automatic analyzer using a reaction vessels of disposable type is provided which is compact in construction and with high accuracy of measurement.The analyzer is comprised with a reaction container which is capable of having a plurality of cuvettes of disposable type set therein, an extracting and injecting unit for injecting a first reagent, a specimen and a second reagent into a disposable cuvette, a light measuring unit for emitting light to the cuvette, and for measuring absorbance thereof and a CPU for producing a calculated value based on outputs of the light measuring unit.The light measuring unit measures absorbance of the first reagent, specimen and second reagent injected into and reacted with each other in a disposable cuvette, and also measures an air blank value representing absorbance of an empty disposable cuvette and a first reagent blank value representing absorbance of a disposable cuvette having first reagent in the cuvette (S104, S106). The CPU compensates the absorbance based on at least one of the air blank value and the first reagent blank value (S112, S113).
    • 提供了一种使用一次性反应容器的自动分析仪,结构紧凑,测量精度高。 所述分析装置具备反应容器,所述反应容器能够具有设置在其中的一次性型的多个比色皿,用于将第一试剂,试样和第二试剂注入到一次性比色皿中的提取注射单元, 将光发射到比色杯,并且用于测量其吸光度,以及CPU,用于基于光测量单元的输出产生计算值。 光测量单元测量在一次性比色杯中注入并反应的第一试剂,试样和第二试剂的吸光度,并且还测量表示空的一次性比色皿的吸光度的空气空白值和表示吸光度的第一试剂空白值 在比色皿中具有第一试剂的一次性比色杯(S104,S106)。 CPU基于空气空白值和第一试剂空白值中的至少一个来补偿吸光度(S 112,S 113)。
    • 60. 发明申请
    • Method of compensation of dose-response curve of an assay for sensitivity to perturbing variables
    • 对扰动变量灵敏度测定的剂量 - 响应曲线的补偿方法
    • US20070166762A1
    • 2007-07-19
    • US11334749
    • 2006-01-19
    • Stephen LeonardSamad Talebpour
    • Stephen LeonardSamad Talebpour
    • G01N33/53G06F19/00
    • G01N35/00693
    • The present invention provides assays and methods of compensating for changes in the dose-response curve of an assay where such changes are due to variations in a perturbing variable such as, but not limited to temperature. This is achieved by a two-step method, the first step of which involves measurements of the dose-response curve, and thus the individual assay parameters, at many different values of the perturbing variable, spanning the expected range of the perturbing variable. In the second step, unknown samples are assayed simultaneously with a known standard at a chosen analyte concentration. During this measurement, the value of the perturbing variable is unknown and the dose-response curve is therefore also unknown. The different dose-response curves from the first step are used to determine a mathematical relationship between the assay parameters and the assay signal of the known standard. With this relationship, in which the value of the perturbing variable is implicit rather than explicit, assay parameters that are valid for the unknown value of the perturbing variable can be obtained by substituting the value of the assay signal from the known standard (measured when assaying the unknown samples) into the mathematical relationship and solving for the assay parameters. The method enables an accurate determination of the analyte concentration even when the perturbing variable is changing or fluctuating from one sample measurement to another. Once the first step is completed, the second step can be performed repeatedly to measure unknown samples with accuracy.
    • 本发明提供了用于补偿测定的剂量 - 反应曲线的变化的测定和方法,其中这些变化是由于扰动变量(例如但不限于温度)的变化引起的。 这是通过两步法实现的,其第一步涉及剂量 - 响应曲线的测量,并且因此涉及扰动变量的许多不同值的单独测定参数,跨越扰动变量的预期范围。 在第二步中,未知样品在选定的分析物浓度下与已知标准同时测定。 在此测量期间,扰动变量的值是未知的,因此剂量 - 反应曲线也是未知的。 使用来自第一步的不同剂量 - 响应曲线来确定测定参数与已知标准的测定信号之间的数学关系。 通过这种关系,其中扰动变量的值是隐含的而不是显式的,可以通过用来自已知标准的测定信号的值(测定时测量)获得对扰动变量的未知值有效的测定参数 未知样品)进入数学关系并解决测定参数。 该方法即使当扰动变量从一个样品测量改变或波动到另一个样品测量时,也能够精确地确定分析物浓度。 一旦完成第一步,可以重复执行第二步,准确测量未知样品。