会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • Method for preventing a by-product ion moving from a spacer
    • 防止副产物离子从间隔物移动的方法
    • US06455389B1
    • 2002-09-24
    • US09872261
    • 2001-06-01
    • Kuo-Tai HuangChao-Sheng LinLi-Wei Cheng
    • Kuo-Tai HuangChao-Sheng LinLi-Wei Cheng
    • H01L21336
    • H01L29/6659H01L29/4983H01L29/6656
    • This invention relates to a method that prevents by-productions from moving from a spacer. In particular by using an offset liner, a liner with a treated surface and a spacer that is formed by using the atomic layer deposition method or the rapid thermal chemical vapor deposition method. The present invention uses a liner, whose surface is treated, and a spacer, which is formed by using the atomic layer deposition method or the rapid thermal chemical vapor deposition method. This prevents by-product ions from moving from the spacer to other regions by using actions in diffusion and drift to affect the voltage stability of the semiconductor device after the current is connected. This defect will further affect qualities of the semiconductor device.
    • 本发明涉及防止副产物从间隔物移动的方法。 特别是通过使用偏移衬垫,具有经处理的表面的衬垫和通过使用原子层沉积法或快速热化学气相沉积法形成的间隔物。 本发明使用表面被处理的衬垫和使用原子层沉积法或快速热化学气相沉积法形成的间隔物。 通过使用扩散和漂移中的动作来影响电流连接后的半导体器件的电压稳定性,防止副产物离子从间隔物移动到其它区域。 该缺陷将进一步影响半导体器件的质量。
    • 53. 发明授权
    • Method for fabricating gate oxide layer
    • 栅极氧化层的制造方法
    • US06221712B1
    • 2001-04-24
    • US09385805
    • 1999-08-30
    • Kuo-Tai HuangMichael W C HuangTri-Rung Yew
    • Kuo-Tai HuangMichael W C HuangTri-Rung Yew
    • B32B1900
    • H01L21/28194C23C16/405H01L21/28088H01L21/31604H01L29/4966H01L29/517
    • A method for fabricating a gate structure. The method involves providing a substrate, followed by forming a nitride region on a surface of the substrate. With a Tantalum (Ta)-based organic compound and a Titanium (Ti)-based organic compound serving as precursors, an organic metal chemical vapor deposition (OMCVD) is performed, so that a Ta2−xTixO5 dielectric layer is formed on the substrate. A barrier layer, a conducting layer, and an anti-reflection (AR) layer are then formed in sequence on the Ta2−xTixO5 dielectric layer. Subsequently, the AR layer, the conducting layer, the barrier layer, and the Ta2−xTixO5 dielectric layer are defined to form a gate structure on the substrate of the nitride region. The Ta-based organic compound in this case may include a Ta-alkoxide compound, whereas the Ti-based organic compound may include a Ti-alkoxide compound or a Ti-amide compound.
    • 一种用于制造栅极结构的方法。 该方法包括提供衬底,随后在衬底的表面上形成氮化物区域。 使用钽(Ta)基有机化合物和作为前体的钛(Ti)基有机化合物,进行有机金属化学气相沉积(OMCVD),从而在衬底上形成Ta2-xTixO5电介质层。 然后依次在Ta2-xTixO5电介质层上形成阻挡层,导电层和抗反射(AR)层。 随后,将AR层,导电层,阻挡层和Ta2-xTixO5电介质层定义为在氮化物区域的衬底上形成栅极结构。 在这种情况下,Ta类有机化合物可以包括Ta-醇盐化合物,而Ti基有机化合物可以包括Ti-醇盐化合物或Ti-酰胺化合物。
    • 54. 发明授权
    • Conformity of ultra-thin nitride deposition for DRAM capacitor
    • 用于DRAM电容器的超薄氮化物沉积的一致性
    • US06207497B1
    • 2001-03-27
    • US09565782
    • 2000-05-05
    • Kuo-Tai HuangJuan-Yuan Wu
    • Kuo-Tai HuangJuan-Yuan Wu
    • H01L218242
    • H01L21/3185H01L27/10852H01L28/84
    • The present invention relates to a method for forming excellent conformity due to improved surface sensitivity. A substrate is providing on which a transistor is formed. Moreover, a blanket first dielectric layer is deposited over the substrate. Then, a first photoresist layer is formed over the dielectric layer, wherein the first photoresist layer is defined and etched to form a contact opening. Further, a first conductive layer is formed to fill the contact opening, and performing an etching process to remove the first conductive layer to form a node contact. Consequentially, a second conductive layer is deposited over the first dielectric layer and the node contact. A second photoresist layer is formed over the second conductive layer, wherein the second photoresist layer is defined and etched to form a storage node as an upper electrode of a capacitor. Next, a hemispherical silicon grain (HSG) is formed over and on a sidewall of the second conductive layer. Treating the hemispherical silicon grain (HSG) layer by rapid thermal nitration (RTN). And then a conformal second dielectric layer is deposited over the hemispherical silicon grain (HSG) and the first dielectric layer after rapid thermal nitration (RTN). Finally, a blanket third conductive layer is formed over the substrate to serve as an upper electrode of the capacitor.
    • 本发明涉及由于提高表面灵敏度而形成优异的一致性的方法。 提供其上形成晶体管的衬底。 此外,毯子第一介电层沉积在衬底上。 然后,在电介质层上形成第一光致抗蚀剂层,其中限定和蚀刻第一光致抗蚀剂层以形成接触开口。 此外,形成第一导电层以填充接触开口,并且执行蚀刻工艺以去除第一导电层以形成节点接触。 因此,第二导电层沉积在第一介电层和节点接触之上。 在第二导电层上形成第二光致抗蚀剂层,其中限定和蚀刻第二光致抗蚀剂层以形成作为电容器的上电极的存储节点。 接下来,在第二导电层的侧壁上形成半球形硅晶粒(HSG)。 通过快速热硝化(RTN)处理半球形硅晶粒(HSG)层。 然后在快速热硝化(RTN)之后,半球形硅晶粒(HSG)和第一介电层上沉积共形第二介电层。 最后,在衬底上形成覆盖的第三导电层以用作电容器的上电极。
    • 55. 发明授权
    • Method of manufacturing dielectric film of capacitor in dynamic random access memory
    • 在动态随机存取存储器中制造电容器介质膜的方法
    • US06200844B1
    • 2001-03-13
    • US09249503
    • 1999-02-12
    • Kuo-Tai Huang
    • Kuo-Tai Huang
    • H01L218234
    • H01L28/40H01L21/3185H01L27/1085H01L28/56
    • A method of manufacturing a dielectric film for a capacitor in a DRAM. A native oxide layer is removed using a rapid ramp process at a pressure lower than 10−5 torr. A nitridation is performed to form a dielectric layer on the surface of a storage electrode. A silicon nitride layer is formed on the dielectric layer. The rapid ramp process is started at a temperature of about 450-550° C. The temperature is raised at a rate of about 80-120° C./minute. The rapid ramp process is stopped at about 700-850° C. The nitridation is performed using a source gas, such as ammonia at about 700-850° C. for a relatively long time of about 10-60 minutes. The dielectric layer includes silicon nitride or silicon-oxy-nitride. An oxide layer is further formed on the silicon nitride layer. The oxide layer is formed by, for example, a rapid thermal process. A gas used in the rapid thermal process can be selected from a group including nitrogen monoxide (N2O), oxygen and combinations of nitrogen monoxide (N2O) and oxygen. The dielectric film structure of the capacitor of the invention can be a double-layer structure such as silicon nitride/silicon oxide or a mono-layer structure, such as silicon nitride.
    • 制造DRAM中的电容器用电介质膜的方法。 在低于10-5乇的压力下使用快速斜坡过程去除天然氧化物层。 进行氮化以在存储电极的表面上形成电介质层。 在电介质层上形成氮化硅层。 快速斜坡过程在约450-550℃的温度下开始。温度以约80-120℃/分钟的速率升高。 快速斜坡过程在约700-850℃停止。氮化在约700-850℃下使用源气体,例如氨进行约10-60分钟的较长时间。 电介质层包括氮化硅或氮氧化硅。 在氮化硅层上进一步形成氧化物层。 氧化物层通过例如快速热处理形成。 用于快速热处理的气体可以选自包括一氧化氮(N2O),氧气和一氧化氮(N2O)和氧气的组合的组。 本发明的电容器的电介质膜结构可以是诸如氮化硅/氧化硅的双层结构或诸如氮化硅的单层结构。
    • 58. 发明授权
    • Method for preventing oxide recess formation in a shallow trench
isolation
    • 在浅沟槽隔离中防止氧化物凹陷形成的方法
    • US5976951A
    • 1999-11-02
    • US106746
    • 1998-06-30
    • Kuo-Tai HuangChih-Hsiang HsiaoChao-Yen Chen
    • Kuo-Tai HuangChih-Hsiang HsiaoChao-Yen Chen
    • H01L21/762H01L21/76
    • H01L21/76232Y10S148/05
    • A method for forming an isolating trench in a substrate is disclosed herein. The forgoing method includes the following steps. First, form a first dielectric layer and a second dielectric layer on the substrate subsequently, and then develop a photoresist pattern on the second dielectric layer. Then, etch the substrate, the first dielectric layer and the second dielectric layer to form a trench in the substrate. Next, form a first silicon dioxide layer in the trench followed by removing the photoresist pattern. The next step is to form a third dielectric layer on the second dielectric layer and the first silicon dioxide layer. Subsequently, fill the trench with silicon dioxide to from an oxide trench; then remove the second dielectric layer, a first portion of the third dielectric layer and a portion of the oxide trench with a chemical mechanical polishing (CMP) and a first solution. The third dielectric layer mentioned above includes the first portion of the third dielectric layer and a second portion of the third dielectric layer. Finally, etch the first dielectric layer and the oxide trench to expose the substrate. The second portion of the third dielectric layer is used to prevent an oxide loss in the oxide trench; then the isolating trench being formed thereof.
    • 本文公开了在衬底中形成隔离沟槽的方法。 前述方法包括以下步骤。 首先,随后在衬底上形成第一电介质层和第二电介质层,然后在第二电介质层上形成光致抗蚀剂图案。 然后,蚀刻衬底,第一介电层和第二介电层,以在衬底中形成沟槽。 接下来,在沟槽中形成第一二氧化硅层,然后除去光致抗蚀剂图案。 下一步是在第二电介质层和第一二氧化硅层上形成第三电介质层。 随后,用二氧化硅填充沟槽至氧化物沟槽; 然后通过化学机械抛光(CMP)和第一溶液去除第二介电层,第三介电层的第一部分和氧化物沟槽的一部分。 上述第三电介质层包括第三电介质层的第一部分和第三电介质层的第二部分。 最后,蚀刻第一介电层和氧化物沟槽以暴露衬底。 第三介质层的第二部分用于防止氧化物沟槽中的氧化物损失; 则形成隔离槽。