会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明申请
    • METHOD FOR CONTROLLING HIGH-FREQUENCY RADIATOR
    • 控制高频散热器的方法
    • US20080266012A1
    • 2008-10-30
    • US12109804
    • 2008-04-25
    • Kazuhiro YahataTakashi UnoHiroyuki SakaiTsuyoshi TanakaDaisuke Ueda
    • Kazuhiro YahataTakashi UnoHiroyuki SakaiTsuyoshi TanakaDaisuke Ueda
    • H03L7/099
    • H03H7/40H05B6/686H05B6/705Y02B40/146
    • A method for controlling a high-frequency radiator includes the steps of: (a) applying a high-frequency radiation through the solid-state oscillator and the antenna; (b) sensing part of the high-frequency radiation returned from the antenna to the solid-state oscillator; (c) adjusting radiation/propagation conditions for the high-frequency radiation on the basis of the sensed results in the step (b), the high-frequency radiation propagating from the solid-state oscillator to the antenna; and (d) after the step (c), applying the high-frequency radiation through the solid-state oscillator and the antenna to a target object. In the step (c), the oscillation frequency of the solid-state oscillator, the power of the high-frequency radiation applied by the solid-state oscillator, the power supply voltage supplied to the solid-state oscillator, the impedance match between the output impedance of the solid-state oscillator and the impedance of the antenna, or any other condition is changed.
    • 一种用于控制高频辐射器的方法包括以下步骤:(a)通过固态振荡器和天线施加高频辐射; (b)感测从天线返回到固态振荡器的一部分高频辐射; (c)基于步骤(b)中检测到的结果,调整从固态振荡器传播到天线的高频辐射来调整高频辐射的辐射/传播条件; 和(d)在步骤(c)之后,将高频辐射通过固态振荡器和天线施加到目标对象。 在步骤(c)中,固态振荡器的振荡频率,由固态振荡器施加的高频辐射的功率,提供给固态振荡器的电源电压, 固体振荡器的输出阻抗和天线的阻抗,或任何其他条件改变。
    • 54. 发明申请
    • Infrared Detector and Process for Fabricating the Same
    • 红外探测器及其制造方法
    • US20080099681A1
    • 2008-05-01
    • US10589724
    • 2004-02-17
    • Yasuhiro ShimadaDaisuke Ueda
    • Yasuhiro ShimadaDaisuke Ueda
    • G01J5/00H01L21/00
    • G01J5/20H01C7/045H01C17/08H01L27/14669H01L27/14683H01L31/09H01L31/109
    • First, an electrode is formed on an insulation layer that has been formed on a silicon substrate, when manufacturing an infrared detection device. The electrode has a shape matching that of a thermal resistance element constituting the infrared detection device. A semiconductor substrate is placed in a reaction chamber, given a predetermined potential, and heated. Next, a material of a thermal resistor substance constituting the thermal resistance element is vaporized into a gaseous material, and the gaseous material is ion-clusterized and supplied into the reaction chamber. The gaseous material collects toward the electrode as a result of an action of an electric field generated by giving the electrode the predetermined potential. The gaseous material that came into contact with the electrode is stabilized by receiving electrons, and thermally decomposes, thus growing a thermal resistor substance on the electrode.
    • 首先,在制造红外线检测装置时,在形成于硅基板上的绝缘层上形成电极。 电极的形状与构成红外线检测装置的热电阻元件的形状一致。 将半导体衬底放置在反应室中,给定预定电位并加热。 接下来,构成热电阻元件的热电阻体的材料蒸发成气态物质,气态物质离子聚集并供给反应室。 由于通过给予电极预定电位而产生的电场的作用,气态材料朝向电极聚集。 与电极接触的气体材料通过接收电子而被稳定,并且热分解,从而在电极上生长热电阻物质。
    • 58. 发明授权
    • Initialization method of optical recording medium
    • 光记录介质的初始化方法
    • US06999396B2
    • 2006-02-14
    • US10474085
    • 2003-02-07
    • Kotaro KurokawaTakeshi YamasakiDaisuke UedaShigeki TakagawaMasanobu Yamamoto
    • Kotaro KurokawaTakeshi YamasakiDaisuke UedaShigeki TakagawaMasanobu Yamamoto
    • G11B7/00
    • G11B7/268G11B7/24038G11B7/252G11B2007/0013
    • An initialization method of an optical recording medium having a plurality of optical recording layers capable of reducing initialization unevenness due to light interference caused at the time of initialization without deteriorating information recording/reproducing signal characteristics of the optical recording layers is provided. An initialization method of an optical recording medium, wherein a second optical recording layer and a first optical recording layer are stacked via an interlayer on a substrate in an order, a protective layer is formed further on the first optical recording layer, a recording film in the first optical recording layer comprises a phase change type recording material, and a recording/reproducing light is irradiated from the protective film side at the time of recording/reproducing, and in a step of initializing by irradiating an initializing light on the first optical recording layer from the protective film side, the first optical recording layer is initialized so that an energy density ID1 per unit area of an incident light of the initializing light at respective points in a light convergence region converged on the first optical recording layer and an energy density ID2 per unit area at the respective points of the light convergence region of a return light, which is the initializing light transmitted through the first optical recording layer to reach the second optical recording layer, reflected on the second optical recording layer and again returned to the first optical recording layer, satisfy ID2/ID1≦0.002.
    • 提供了具有多个光记录层的光记录介质的初始化方法,其能够在初始化时引起由于光干扰引起的初始化不均匀性,而不会使信息记录/再现信号特性的光记录层恶化。 一种光记录介质的初始化方法,其中第二光记录层和第一光记录层经由基板上的中间层依次层叠,在第一光记录层上进一步形成保护层,记录膜 第一光记录层包括相变型记录材料,并且在记录/再现时从保护膜侧照射记录/再现光,并且在通过在第一光学记录上照射初始化光来进行初始化的步骤 从保护膜侧开始,第一光记录层被初始化,使得会聚在第一光记录层上的光会聚区域各点处的初始化光的入射光的每单位面积的能量密度ID 1和能量 在作为初始化的返回光的光会聚区域的各个点处的单位面积的密度ID 2 透射通过第一光学记录层的光到达第二光学记录层,在第二光学记录层上反射并再次返回到第一光学记录层,满足ID 2 / ID 1 <= 0.002。
    • 59. 发明申请
    • Laser device
    • 激光设备
    • US20050152430A1
    • 2005-07-14
    • US11023419
    • 2004-12-29
    • Toshikazu OnishiKazutoshi OnozawaShinji YoshidaDaisuke Ueda
    • Toshikazu OnishiKazutoshi OnozawaShinji YoshidaDaisuke Ueda
    • H01S3/105G01N21/84H01S3/08H01S5/068H01S5/10H01S5/183
    • H01S5/18394H01S5/1046H01S5/18319H01S5/1835
    • According to the present invention, a first p-side electrode 7A made of metal which is provided with regularly arranged holes 10 having a diameter smaller than a laser oscillation wavelength and a second p-side electrode 7B arranged around the periphery of the first p-type electrode 7A are used as a p-side mirror of a surface-emitting laser. Light in a resonator formed of a p-side electrode 7 and an n-type mirror 2 is first converted to a surface plasmon and then reconverted to the light by the p-side electrode 7A, and then emitted outside the resonator. This improves the light transmittance, thereby permitting use of metal which is considered to have inherently low light transmittance as a material for the p-side electrode 7. If the p-side electrode 7 is made of metal, operating voltage is reduced and heat dissipation improves, without causing a spike in a valence band, which occurs when a semiconductor layer is used. Further, due to the nonlinear effect of the mirror, optical feedback to the inside of the resonator is controlled, whereby a laser device with excellent noise characteristic is obtained.
    • 根据本发明,由金属制成的第一p侧电极7A,其具有规则排列的直径小于激光振荡波长的孔10,第二p侧电极7B布置在第一 p型电极7A用作表面发射激光器的p侧反射镜。 首先将由p侧电极7和n型反射镜2形成的谐振器中的光转换为表面等离子体,然后通过p侧电极7A再次转换为光,然后发射到谐振器外部。 这提高了透光率,从而允许使用被认为具有固有的低透光率的金属作为p侧电极7的材料。 如果p侧电极7由金属制成,则工作电压降低,散热改善,而不会在使用半导体层时发生价带的尖峰。 此外,由于反射镜的非线性效应,对谐振器内部的光反馈被控制,从而获得具有优异噪声特性的激光器件。