会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明申请
    • Method of making arrays of thin sheet microdischarge devices
    • 制备薄片微放电器件阵列的方法
    • US20080119105A1
    • 2008-05-22
    • US11981412
    • 2007-10-31
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • H01J9/02
    • H01J17/49H01J1/025H01J9/00H01J9/02H01J25/50H01J61/09H01J61/305H01J61/62H01J63/04H01J65/046
    • The invention provides methods of making arrays of thin sheet microdischarge devices. In a preferred method of fabricating an array of microdischarge devices, a multi-layer dielectric layer thin sheet is position with respect to a first thin electrode. A second electrode thin sheet is joined on the dielectric layer sheet. An array of microcavities is provided through at least a portion of the dielectric layer sheet. The method can produce thin large arrays inexpensively. In preferred embodiments, each of the multi-layer dielectric layer thin sheet, the first thin electrode and the second electrode thin sheet have a thickness of less than less than 100 μm. In preferred embodiments, the multi-layer dielectric is formed of polymer, and in other embodiments from oxides and/or nitrides. In a particular preferred embodiment, the multilayer dielectric is formed from oxide and nitride films.
    • 本发明提供了制备薄片微放电器件阵列的方法。 在制造微放电器件阵列的优选方法中,多层介电层薄片相对于第一薄电极位置。 第二电极薄片接合在电介质层片上。 通过介电层片材的至少一部分提供微腔阵列。 该方法可以廉价地生产薄的大阵列。 在优选实施例中,多层介电层薄片,第一薄电极和第二电极薄片中的每一个具有小于小于100μm的厚度。 在优选实施例中,多层电介质由聚合物形成,在其它实施例中由氧化物和/或氮化物形成。 在特别优选的实施例中,多层电介质由氧化物和氮化物膜形成。
    • 56. 发明授权
    • Electron injection-controlled microcavity plasma device and arrays
    • 电子注入控制的微腔等离子体装置和阵列
    • US08471471B2
    • 2013-06-25
    • US12682974
    • 2008-10-27
    • J. Gary EdenKuo-Feng Chen
    • J. Gary EdenKuo-Feng Chen
    • H01J17/49H05H1/24
    • H01J11/18H01J61/82
    • An embodiment of the invention is a microcavity plasma device that can be controlled by a low voltage electron emitter. The microcavity plasma device includes driving electrodes disposed proximate to a microcavity and arranged to contribute to generation of plasma in the microcavity upon application of a driving voltage. An electron emitter is arranged to emit electrons into the microcavity upon application of a control voltage. The electron emitter is an electron source having an insulator layer defining a tunneling region. The microplasma itself can serve as a second electrode necessary to energize the electron emitter. While a voltage comparable to previous microcavity plasma devices is still imposed across the microcavity plasma devices, control of the devices can be accomplished at high speeds and with a small voltage, e.g., about 5V to 30V in preferred embodiments.
    • 本发明的一个实施例是可以由低电压电子发射器控制的微腔等离子体装置。 微腔等离子体装置包括靠近微腔设置的驱动电极,并布置成有助于在施加驱动电压时在微腔中产生等离子体。 电子发射器布置成在施加控制电压时将电子发射到微腔中。 电子发射体是具有限定隧道区域的绝缘体层的电子源。 微质体本身可以用作为电子发射体通电所必需的第二电极。 虽然与先前的微腔等离子体器件相当的电压仍然施加在微腔等离子体器件之间,但是在优选实施例中,器件的控制可以在高速和小电压下实现,例如约5V至30V。
    • 58. 发明授权
    • Phase locked microdischarge array and AC, RF or pulse excited microdischarge
    • 锁相微放电阵列和AC,RF或脉冲激励微放电
    • US07372202B2
    • 2008-05-13
    • US10829666
    • 2004-04-22
    • J. Gary EdenJu GaoSung-o Kim
    • J. Gary EdenJu GaoSung-o Kim
    • H01J17/49H01J17/04
    • H01J17/40
    • The invention is directed to a method and apparatus for phase-locking microdischarge device arrays and an ac, rf, or pulse-excited microdischarge. The invention provides output from a non-laser optical source that is a phase-locked array of microdischarges formed of microdischarge cavities containing discharge filler and excitation electrodes. In exemplary embodiments, entire arrays of microdischarge device optical emitters that are not lasers can be fabricated into a surface area having a largest dimension smaller than the coherence length of at least one of the emissions produced by the individual elements. In other embodiments, arrays of microdischarge devices configured in a Fresnel pattern constitute a lens suitable for both producing and focusing light.
    • 本发明涉及一种用于相位锁定微放电器件阵列和ac,rf或脉冲激发微放电的方法和装置。 本发明提供了非激光光源的输出,该非激光光源是由包含放电填料和激发电极的微放电腔形成的微放电的锁相阵列。 在示例性实施例中,不是激光器的整个微放电器件光发射器阵列可以被制造成具有比由各个元件产生的至少一个发射的相干长度小的最大尺寸的表面区域。 在其它实施例中,以菲涅耳图案配置的微放电器件阵列构成适于产生和聚焦光的透镜。
    • 59. 发明授权
    • Microdischarge lamp
    • 微量放电灯
    • US6016027A
    • 2000-01-18
    • US858235
    • 1997-05-19
    • Thomas A. DeTempleJames FrameDavid J. WheelerJ. Gary Eden
    • Thomas A. DeTempleJames FrameDavid J. WheelerJ. Gary Eden
    • H01J61/04G03F7/20H01J9/02H01J17/49H01J61/72H01J1/16
    • G03F7/70016H01J17/49H01J61/72H01J9/02
    • A microdischarge lamp formed in a one piece integral substrate, preferably a silicon wafer, via micromachining techniques commonly used in integrated circuit manufacture. The lamp includes a micromachined cavity area for enclosing discharge filler, such as mercury vapor. The one piece substrate includes one or more semiconductor regions which act as electrodes for the lamp. A light transmissive cap seals the cavity area. Selection of particular aperture to length ratios for the cavity area permits the lamp to be operated either as a positive column or hollow cathode discharge. Hollow cathode discharge has been demonstrated at pressures of up to about 200 Torr. The small aperture of the cavity area, of about 1 to 400 micrometers, enable the electrons in the discharge to be ballistic. In addition, the small dimensions permit discharges based upon resonance radiation, such as the 253 nm line of atomic mercury.
    • 一种微放电灯,其通过在集成电路制造中通常使用的微加工技术形成在一体式整体衬底,优选硅晶片中。 该灯包括用于封闭排放填料的微加工空腔区域,例如汞蒸气。 一体式衬底包括用作灯的电极的一个或多个半导体区域。 透光盖密封空腔区域。 选择腔体区域的特定孔径与长度比允许灯作为正柱或空心阴极放电进行操作。 已经证明在高达约200Torr的压力下空心阴极放电。 约1至400微米的空腔区域的小孔使放电中的电子具有弹道性。 此外,小尺寸允许基于共振辐射的放电,例如253nm的原子汞线。