会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明授权
    • Integrated circuit gate conductor having a gate dielectric which is
substantially resistant to hot carrier effects
    • 集成电路栅极导体,其具有基本上抵抗热载流子效应的栅极电介质
    • US5923983A
    • 1999-07-13
    • US771871
    • 1996-12-23
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H01L21/28H01L21/336H01L29/49H01L29/51
    • H01L29/518H01L21/28176H01L21/28247H01L29/4983H01L29/6659
    • An integrated circuit is formed whereby transistor gate dielectrics are made less susceptible to hot carrier effects. Barrier atoms are inserted into critical areas to minimize trapping of hot carriers within the gate dielectric. Barrier atoms are incorporated into critical areas within the gate dielectric, primarily at the juncture between the gate dielectric and the overlying gate conductor and underlying substrate. The barrier atoms serve to eliminate bond opportunities of hot carriers injected from the drain area. The barrier atoms are presented by elevating the temperature of the integrated circuit being produced and the barrier-embodied gas surrounding the circuit. The elevated temperatures occur within either an RTA furnace or an oxidizing furnace. Significant is the incorporation of barrier atoms during a normal process flow, either during polysilicon oxidation and/or implant anneal. According to one embodiment, barrier atoms are incorporated after the LDD implant during times in which a polysilicon oxide is grown. According to a second embodiment, barrier atoms are incorporated after the source/drain implant and during anneal of those implant species. In yet another embodiment, barrier atoms are incorporated during each of the above steps.
    • 形成集成电路,由此使得晶体管栅极电介质不易受热载流子效应的影响。 阻挡原子被插入关键区域以最小化栅极电介质中热载流子的捕获。 栅极原子被并入到栅极电介质的关键区域中,主要在栅极电介质和上覆栅极导体和下面的衬底之间的接合处。 势垒原子用于消除从漏极区域注入的热载流子的键合机会。 通过提高所产生的集成电路的温度和围绕电路的屏障实施的气体来呈现阻挡原子。 高温发生在RTA炉或氧化炉内。 重要的是在正常工艺流程期间,在多晶硅氧化和/或注入退火期间引入势垒原子。 根据一个实施方案,在生长多晶氧化物的时间内,在LDD注入之后结合势垒原子。 根据第二实施例,在源极/漏极注入之后并且在那些植入物种的退火期间并入势垒原子。 在另一个实施方案中,在上述每个步骤期间并入阻挡原子。
    • 55. 发明授权
    • Composite gate electrode incorporating dopant diffusion-retarding
barrier layer adjacent to underlying gate dielectric
    • 复合栅电极,其与掺杂剂扩散阻滞层结合,邻近底层栅极电介质
    • US5885877A
    • 1999-03-23
    • US837581
    • 1997-04-21
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseDaniel KadoshMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseDaniel KadoshMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/28H01L29/49H01L21/336H01L21/3205
    • H01L21/28035H01L29/4916
    • A composite gate electrode layer incorporates a diffusion-retarding barrier layer disposed at the bottom of the gate electrode layer to reduce the amount of dopant which diffuses into the gate dielectric layer from the gate electrode layer. A lower nitrogen-containing gate electrode layer provides a diffusion-retarding barrier layer against dopant diffusion into the gate dielectric layer disposed therebelow, and an upper gate electrode layer is formed upon the lower layer and is doped to form a highly conductive layer. Together the first and second gate electrode layers form a composite gate electrode layer which incorporates a diffusion-retarding barrier layer adjacent to the underlying gate dielectric layer. The barrier layer may be formed by annealing a first polysilicon layer in a nitrogen-containing ambient, such as N.sub.2, NO, N.sub.2 O, and NH.sub.3, by implanting a nitrogen-containing material, such as elemental or molecular nitrogen, into a first polysilicon layer, and by in-situ depositing a nitrogen-doped first polysilicon layer. Diffusion of dopants into the gate dielectric layer may be retarded, as most dopant atoms are prevented from diffusing from the composite gate electrode layer at all. In addition, the nitrogen concentration within the gate dielectric layer, particularly at or near the substrate interface, may be maintained at lower concentrations than otherwise necessary to prevent dopant diffusion into the underlying substrate. The present invention is particularly well suited to thin gate dielectrics, such as a those having a thickness less than approximately 60 .ANG. when using a p-type dopant, such as boron.
    • 复合栅极电极层包括设置在栅极电极层底部的扩散阻挡层,以减少从栅极电极层扩散到栅极电介质层中的掺杂剂的量。 下部含氮栅电极层提供阻止扩散阻挡层,以阻止掺杂剂扩散到设置在其下方的栅介质层中,并且在下层上形成上栅极电极层,并且被掺杂以形成高导电层。 第一和第二栅极电极层一起形成复合栅极电极层,该复合栅极电极层包含与下面的栅极电介质层相邻的扩散阻滞阻挡层。 通过将含氮材料(例如元素或分子氮)注入到第一多晶硅层中,可以通过在氮气环境如N 2,NO,N 2 O和NH 3中退火第一多晶硅层来形成阻挡层 ,并通过原位沉积氮掺杂的第一多晶硅层。 完全可以防止掺杂剂扩散到栅极电介质层中,因为大多数掺杂剂原子被阻止从复合栅极电极层扩散。 此外,栅极电介质层内,特别是在衬底界面处或附近的氮浓度可以保持在比防止掺杂剂扩散到下面的衬底中所必需的更低的浓度。 本发明特别适用于薄栅电介质,例如当使用诸如硼的p型掺杂剂时厚度小于约60的薄电介质。
    • 56. 发明授权
    • Asymmetrical transistor with lightly doped drain region, heavily doped
source and drain regions, and ultra-heavily doped source region
    • 具有轻掺杂漏极区域,重掺杂源极和漏极区域以及超重掺杂源极区域的非对称晶体管
    • US5831306A
    • 1998-11-03
    • US823946
    • 1997-03-25
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • H01L21/336H01L29/78
    • H01L29/66659H01L29/7835
    • An asymmetrical IGFET including a lightly doped drain region, heavily doped source and drain regions, and an ultra-heavily doped source region is disclosed. Preferably, the lightly doped drain region and heavily doped source region provide channel junctions. A method of making the IGFET includes providing a semiconductor substrate, forming a gate with first and second opposing sidewalls over the substrate, applying a first ion implantation to implant lightly doped source and drain regions into the substrate, applying a second ion implantation to convert the lightly doped source region into a heavily doped source region without doping the lightly doped drain region, forming first and second spacers adjacent to the first and second sidewalls, respectively, and applying a third ion implantation to convert a portion of the heavily doped source region outside the first spacer into an ultra-heavily doped source region without doping a portion of the heavily doped source region beneath the first spacer, and to convert a portion of the lightly doped drain region outside the second spacer into a heavily doped drain region without doping a portion of the lightly doped drain region beneath the second spacer. Advantageously, the IGFET has low source-drain series resistance and reduces hot carrier effects.
    • 公开了一种包括轻掺杂漏极区域,重掺杂源极和漏极区域以及超重掺杂源极区域的非对称IGFET。 优选地,轻掺杂漏极区域和重掺杂源极区域提供通道结。 制造IGFET的方法包括提供半导体衬底,在衬底上形成具有第一和第二相对侧壁的栅极,施加第一离子注入以将轻掺杂的源极和漏极区域注入到衬底中,施加第二离子注入以将 轻掺杂源区域分成重掺杂源区,而不掺杂轻掺杂漏极区,分别与第一和第二侧壁相邻形成第一和第二间隔,并施加第三离子注入以将重掺杂源区的一部分转换到外部 所述第一间隔物进入超重掺杂源区,而不掺杂所述第一间隔物下方的重掺杂源区的一部分,以及将所述第二间隔区外部的所述轻掺杂漏极区的一部分转换为重掺杂漏极区,而不掺杂 第二间隔物下方的轻掺杂漏极区的部分。 有利地,IGFET具有低的源极 - 漏极串联电阻并且降低热载流子效应。
    • 57. 发明授权
    • Semiconductor wafer with enhanced pre-process denudation and
process-induced gettering
    • 半导体晶片具有增强的预处理剥蚀和工艺引起的吸气
    • US5445975A
    • 1995-08-29
    • US206977
    • 1994-03-07
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • H01L21/322H01L21/324
    • H01L21/3225Y10S148/06
    • A method is provided for pre-process denudation and process-induced gettering of a CZ silicon wafer having one or more monolithic devices embodied therein. Pre-process denudation is performed in a hydrogen ambient to out-diffuse oxygen as well as to maintain interstitial silicon flux away from the substrate surface. Process-induced gettering is performed at a low temperature to ensure stacking faults and surface irregularities do not arise from interstitial silicon bonding at the surface prior to gate oxidation. The third step of the denudation/gettering cycle involving precipitate growth is thereby delayed or forestalled until the field oxide is grown. Any changes or movement in oxygen and/or interstitial silicon within or near the substrate surface occurring after polysilicon deposition will have minimal effect upon the established gate oxide. Accordingly, gate oxide integrity (e.g., breakdown voltage and uniformity) are enhanced by the present process.
    • 提供了一种用于预处理剥蚀和具有其中实施的具有一个或多个单片器件的CZ硅晶片的工艺诱导吸除的方法。 在氢环境中进行预处理剥蚀以使氧扩散以及保持间隙硅熔剂远离衬底表面。 在低温下进行过程诱导的吸气以确保堆垛层错,并且在栅极氧化之前的表面处的间隙硅键不会产生表面不规则性。 涉及沉淀生长的剥蚀/吸除循环的第三步骤因此被延迟或预防,直到场氧化物生长。 在多晶硅沉积之后发生的衬底表面内或附近的氧和/或间隙硅中的任何变化或移动对所建立的栅极氧化物的影响最小。 因此,通过本方法增强栅极氧化物完整性(例如,击穿电压和均匀性)。
    • 60. 发明授权
    • Dopant diffusion-retarding barrier region formed within polysilicon gate layer
    • 在多晶硅栅极层内形成的掺杂扩散阻滞层
    • US06380055B2
    • 2002-04-30
    • US09177043
    • 1998-10-22
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L213205
    • H01L29/4925H01L21/28035H01L21/32155
    • A diffusion-retarding barrier region is incorporated into the gate electrode to reduce the downward diffusion of dopant toward the gate dielectric. The barrier region is a nitrogen-containing diffusion retarding barrier region formed between two separately formed layers of polysilicon. The upper layer of polysilicon is doped more heavily than the lower layer of polysilicon, and the barrier region serves to keep most of the dopant within the upper layer of polysilicon, and yet may allow some of the dopant to diffuse into the lower layer of polysilicon. The barrier region may be formed, for example, by annealing the first polysilicon layer in an nitrogen-containing ambient to form a nitrided layer at the top surface of the first polysilicon layer. The barrier region may alternatively be formed by depositing a nitrogen-containing layer, such as a silicon nitride or titanium nitride layer, on the top surface of the first polysilicon layer. The thickness of the nitrogen-containing layer is preferably approximately 5-15 Å thick. Any nitrogen residing at the top of the gate dielectric may be kept to a concentration less than approximately 2%. The present invention is particularly well suited to thin gate dielectrics, such as a those having a thickness of approximately 25-60 Å, when using a p-type dopant, such as boron.
    • 扩散阻滞屏障区域被结合到栅电极中以减少掺杂剂朝向栅极电介质的向下扩散。 阻挡区域是在两个单独形成的多晶硅层之间形成的含氮扩散阻滞区域。 多晶硅的上层比多晶硅的下层掺杂更多,并且势垒区域用于将大部分掺杂剂保持在多晶硅的上层内,并且还可以允许一些掺杂剂扩散到多晶硅的下层 。 阻挡区域可以例如通过在含氮环境中退火第一多晶硅层以在第一多晶硅层的顶表面处形成氮化层而形成。 可以通过在第一多晶硅层的顶表面上沉积含氮层,例如氮化硅或氮化钛层来形成阻挡区。 含氮层的厚度优选为约5〜约厚。 驻留在栅极电介质顶部的任何氮可以保持在小于约2%的浓度。 当使用诸如硼的p型掺杂剂时,本发明特别适用于薄栅极电介质,例如厚度大约为25埃的那些。