会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Integrated circuit gate conductor having a gate dielectric which is
substantially resistant to hot carrier effects
    • 集成电路栅极导体,其具有基本上抵抗热载流子效应的栅极电介质
    • US5923983A
    • 1999-07-13
    • US771871
    • 1996-12-23
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H01L21/28H01L21/336H01L29/49H01L29/51
    • H01L29/518H01L21/28176H01L21/28247H01L29/4983H01L29/6659
    • An integrated circuit is formed whereby transistor gate dielectrics are made less susceptible to hot carrier effects. Barrier atoms are inserted into critical areas to minimize trapping of hot carriers within the gate dielectric. Barrier atoms are incorporated into critical areas within the gate dielectric, primarily at the juncture between the gate dielectric and the overlying gate conductor and underlying substrate. The barrier atoms serve to eliminate bond opportunities of hot carriers injected from the drain area. The barrier atoms are presented by elevating the temperature of the integrated circuit being produced and the barrier-embodied gas surrounding the circuit. The elevated temperatures occur within either an RTA furnace or an oxidizing furnace. Significant is the incorporation of barrier atoms during a normal process flow, either during polysilicon oxidation and/or implant anneal. According to one embodiment, barrier atoms are incorporated after the LDD implant during times in which a polysilicon oxide is grown. According to a second embodiment, barrier atoms are incorporated after the source/drain implant and during anneal of those implant species. In yet another embodiment, barrier atoms are incorporated during each of the above steps.
    • 形成集成电路,由此使得晶体管栅极电介质不易受热载流子效应的影响。 阻挡原子被插入关键区域以最小化栅极电介质中热载流子的捕获。 栅极原子被并入到栅极电介质的关键区域中,主要在栅极电介质和上覆栅极导体和下面的衬底之间的接合处。 势垒原子用于消除从漏极区域注入的热载流子的键合机会。 通过提高所产生的集成电路的温度和围绕电路的屏障实施的气体来呈现阻挡原子。 高温发生在RTA炉或氧化炉内。 重要的是在正常工艺流程期间,在多晶硅氧化和/或注入退火期间引入势垒原子。 根据一个实施方案,在生长多晶氧化物的时间内,在LDD注入之后结合势垒原子。 根据第二实施例,在源极/漏极注入之后并且在那些植入物种的退火期间并入势垒原子。 在另一个实施方案中,在上述每个步骤期间并入阻挡原子。
    • 44. 发明授权
    • Composite gate electrode incorporating dopant diffusion-retarding
barrier layer adjacent to underlying gate dielectric
    • 复合栅电极,其与掺杂剂扩散阻滞层结合,邻近底层栅极电介质
    • US5885877A
    • 1999-03-23
    • US837581
    • 1997-04-21
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseDaniel KadoshMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseDaniel KadoshMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/28H01L29/49H01L21/336H01L21/3205
    • H01L21/28035H01L29/4916
    • A composite gate electrode layer incorporates a diffusion-retarding barrier layer disposed at the bottom of the gate electrode layer to reduce the amount of dopant which diffuses into the gate dielectric layer from the gate electrode layer. A lower nitrogen-containing gate electrode layer provides a diffusion-retarding barrier layer against dopant diffusion into the gate dielectric layer disposed therebelow, and an upper gate electrode layer is formed upon the lower layer and is doped to form a highly conductive layer. Together the first and second gate electrode layers form a composite gate electrode layer which incorporates a diffusion-retarding barrier layer adjacent to the underlying gate dielectric layer. The barrier layer may be formed by annealing a first polysilicon layer in a nitrogen-containing ambient, such as N.sub.2, NO, N.sub.2 O, and NH.sub.3, by implanting a nitrogen-containing material, such as elemental or molecular nitrogen, into a first polysilicon layer, and by in-situ depositing a nitrogen-doped first polysilicon layer. Diffusion of dopants into the gate dielectric layer may be retarded, as most dopant atoms are prevented from diffusing from the composite gate electrode layer at all. In addition, the nitrogen concentration within the gate dielectric layer, particularly at or near the substrate interface, may be maintained at lower concentrations than otherwise necessary to prevent dopant diffusion into the underlying substrate. The present invention is particularly well suited to thin gate dielectrics, such as a those having a thickness less than approximately 60 .ANG. when using a p-type dopant, such as boron.
    • 复合栅极电极层包括设置在栅极电极层底部的扩散阻挡层,以减少从栅极电极层扩散到栅极电介质层中的掺杂剂的量。 下部含氮栅电极层提供阻止扩散阻挡层,以阻止掺杂剂扩散到设置在其下方的栅介质层中,并且在下层上形成上栅极电极层,并且被掺杂以形成高导电层。 第一和第二栅极电极层一起形成复合栅极电极层,该复合栅极电极层包含与下面的栅极电介质层相邻的扩散阻滞阻挡层。 通过将含氮材料(例如元素或分子氮)注入到第一多晶硅层中,可以通过在氮气环境如N 2,NO,N 2 O和NH 3中退火第一多晶硅层来形成阻挡层 ,并通过原位沉积氮掺杂的第一多晶硅层。 完全可以防止掺杂剂扩散到栅极电介质层中,因为大多数掺杂剂原子被阻止从复合栅极电极层扩散。 此外,栅极电介质层内,特别是在衬底界面处或附近的氮浓度可以保持在比防止掺杂剂扩散到下面的衬底中所必需的更低的浓度。 本发明特别适用于薄栅电介质,例如当使用诸如硼的p型掺杂剂时厚度小于约60的薄电介质。
    • 45. 发明授权
    • Trench isolation structure partially bound between a pair of low K
dielectric structures
    • 沟槽隔离结构部分地结合在一对低K电介质结构之间
    • US5882983A
    • 1999-03-16
    • US994143
    • 1997-12-19
    • Mark I. GardnerH. Jim Fulford, Jr.Charles E. May
    • Mark I. GardnerH. Jim Fulford, Jr.Charles E. May
    • H01L21/762H01L21/326H01L21/76
    • H01L21/76237
    • A process is provided for forming to dielectric structures having a relatively low dielectric constant arranged adjacent to the opposed lateral edges of a trench isolation structure. In an embodiment, an opening is etched vertically through a masking layer arranged upon a semiconductor substrate, thereby exposing the surface of the substrate. A patterned photoresist layer is formed upon the masking layer using optical lithography to define the region to be etched. Sidewall spacers made of a low K dielectric material are formed upon the opposed sidewall surfaces of the masking layer within the opening. The sidewall spacers are formed by CVD depositing a dielectric material within the opening and anisotropically etching the dielectric material until only a pre-defined thickness of the material remains upon the masking layer sidewall surfaces. Thereafter, a trench defined between the exposed lateral edges of the sidewall spacers is formed within the substrate. The sidewall spacers permit the lateral width of the spacers to be reduced below the minimum lateral dimension definable using lithography. A trench dielectric is formed within the trench such that the upper portion of the dielectric is bound by the sidewall spacers on opposite ends. The resulting trench isolation structure is less likely to experience current leakage when operating an ensuing integrated circuit which employs the isolation structure.
    • 提供了一种用于形成具有邻近沟槽隔离结构的相对侧边缘布置的相对低的介电常数的电介质结构的工艺。 在一个实施例中,通过布置在半导体衬底上的掩模层垂直蚀刻开口,从而暴露衬底的表面。 使用光刻法在掩模层上形成图案化的光致抗蚀剂层,以限定待蚀刻的区域。 由低K电介质材料制成的侧壁隔离物形成在开口内的掩蔽层的相对的侧壁表面上。 通过在开口内CVD沉积电介质材料并各向异性地蚀刻电介质材料形成侧壁间隔物,直到材料的预定厚度仅保留在掩模层侧壁表面上为止。 此后,在衬底内形成限定在侧壁间隔物的暴露的横向边缘之间的沟槽。 侧壁间隔件允许间隔物的横向宽度减小到使用光刻可定义的最小横向尺寸以下。 在沟槽内形成沟槽电介质,使得电介质的上部由相对端上的侧壁间隔件结合。 当使用隔离结构的随后集成电路进行操作时,所得到的沟槽隔离结构不太可能经历电流泄漏。
    • 48. 发明授权
    • Method of making transistor having a gate dielectric which is
substantially resistant to drain-side hot carrier injection
    • 制造具有基本上耐漏极侧热载流子注入的栅极电介质的晶体管的方法
    • US5851893A
    • 1998-12-22
    • US896680
    • 1997-07-18
    • Mark I. GardnerH. Jim Fulford, Jr.
    • Mark I. GardnerH. Jim Fulford, Jr.
    • H01L21/28H01L21/336H01L29/51H01L29/78
    • H01L29/66659H01L21/28176H01L29/518H01L29/6659H01L29/7833H01L21/28194Y10S257/90Y10S438/91
    • A transistor fabrication process is provided which derives a benefit from having barrier atoms incorporated in a lateral area under a gate oxide of the transistor in close proximity to the drain. To form the transistor, a gate oxide layer is first grown across a silicon-based substrate. A polysilicon layer is then deposited across the gate oxide layer. Portions of the polysilicon layer and the oxide layer are removed to form a gate conductor and gate oxide, thereby exposing source-side and drain-side junctions within the substrate. An LDD implant is performed to lightly dope the source-side and drain-side junctions. An etch stop material may be formed upon opposed sidewall surfaces of the gate conductor, the upper surface of the gate conductor, and the source-side and drain-side junctions. Spacers may then be formed laterally adjacent the etch stop material located upon sidewall surfaces of the gate conductor. The unmasked portions of the source-side and drain-side junctions are heavily doped, resulting in source and drain regions that are aligned to the exposed lateral edges of the spacers. The drain-side spacer is removed and barrier atoms are forwarded through the exposed etch stop material and into a substrate/gate oxide interface region near the drain junction. The barrier atoms help reduce hot electron effects by blocking diffusion avenues of carriers (holes or electrons) from the drain-side junction into the gate oxide.
    • 提供了一种晶体管制造工艺,该方法得益于将栅极原子结合在晶体管的栅极氧化物附近在漏极附近的优点。 为了形成晶体管,首先在硅基衬底上生长栅氧化层。 然后在栅极氧化物层上沉积多晶硅层。 去除多晶硅层和氧化物层的部分以形成栅极导体和栅极氧化物,从而暴露衬底内的源极侧和漏极侧结。 进行LDD注入以轻轻地掺杂源极侧漏极和漏极侧结。 蚀刻停止材料可以形成在栅极导体的相对的侧壁表面,栅极导体的上表面以及源极侧和漏极侧结。 然后可以在位于栅极导体的侧壁表面上的蚀刻停止材料的横向邻近地形成间隔。 源侧和漏极侧结的未屏蔽部分被重掺杂,导致源极和漏极区域与间隔物的暴露的侧向边缘对准。 去除漏极侧隔离物,并且阻挡原子通过暴露的蚀刻停止材料并且进入到漏极结附近的衬底/栅极氧化物界面区域中。 阻挡原子有助于通过阻止载流子(空穴或电子)从漏极侧结到扩散通道到栅极氧化物中来减少热电子效应。
    • 50. 发明授权
    • Asymmetrical transistor with lightly doped drain region, heavily doped
source and drain regions, and ultra-heavily doped source region
    • 具有轻掺杂漏极区域,重掺杂源极和漏极区域以及超重掺杂源极区域的非对称晶体管
    • US5831306A
    • 1998-11-03
    • US823946
    • 1997-03-25
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • H01L21/336H01L29/78
    • H01L29/66659H01L29/7835
    • An asymmetrical IGFET including a lightly doped drain region, heavily doped source and drain regions, and an ultra-heavily doped source region is disclosed. Preferably, the lightly doped drain region and heavily doped source region provide channel junctions. A method of making the IGFET includes providing a semiconductor substrate, forming a gate with first and second opposing sidewalls over the substrate, applying a first ion implantation to implant lightly doped source and drain regions into the substrate, applying a second ion implantation to convert the lightly doped source region into a heavily doped source region without doping the lightly doped drain region, forming first and second spacers adjacent to the first and second sidewalls, respectively, and applying a third ion implantation to convert a portion of the heavily doped source region outside the first spacer into an ultra-heavily doped source region without doping a portion of the heavily doped source region beneath the first spacer, and to convert a portion of the lightly doped drain region outside the second spacer into a heavily doped drain region without doping a portion of the lightly doped drain region beneath the second spacer. Advantageously, the IGFET has low source-drain series resistance and reduces hot carrier effects.
    • 公开了一种包括轻掺杂漏极区域,重掺杂源极和漏极区域以及超重掺杂源极区域的非对称IGFET。 优选地,轻掺杂漏极区域和重掺杂源极区域提供通道结。 制造IGFET的方法包括提供半导体衬底,在衬底上形成具有第一和第二相对侧壁的栅极,施加第一离子注入以将轻掺杂的源极和漏极区域注入到衬底中,施加第二离子注入以将 轻掺杂源区域分成重掺杂源区,而不掺杂轻掺杂漏极区,分别与第一和第二侧壁相邻形成第一和第二间隔,并施加第三离子注入以将重掺杂源区的一部分转换到外部 所述第一间隔物进入超重掺杂源区,而不掺杂所述第一间隔物下方的重掺杂源区的一部分,以及将所述第二间隔区外部的所述轻掺杂漏极区的一部分转换为重掺杂漏极区,而不掺杂 第二间隔物下方的轻掺杂漏极区的部分。 有利地,IGFET具有低的源极 - 漏极串联电阻并且降低热载流子效应。