会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 43. 发明申请
    • SEMICONDUCTOR STRUCTURE PROCESSING USING MULTIPLE LASER BEAM SPOTS OVERLAPPING LENGTHWISE ON A STRUCTURE
    • 使用多个激光束的半导体结构处理在结构上重叠长度
    • US20100084662A1
    • 2010-04-08
    • US12633123
    • 2009-12-08
    • Kelly J. BrulandBrian W. BairdHo Wai LoRichard S. HarrisYunlong Sun
    • Kelly J. BrulandBrian W. BairdHo Wai LoRichard S. HarrisYunlong Sun
    • H01L29/04H01L21/00B23K26/067B23K26/36
    • B23K26/067B23K26/0604B23K26/0613H01L21/76894H01L23/5258H01L27/1052H01L27/10894H01L2924/0002H01L2924/00
    • Methods and systems use laser pulses to process a selected structure on or within a semiconductor substrate. The structure has a surface, a width, and a length. The laser pulses propagate along axes that move along a scan beam path relative to the substrate as the laser pulses process the selected structure. The method simultaneously generates on the selected structure first and second laser beam pulses that propagate along respective first and second laser beam axes intersecting the selected structure at distinct first and second locations. The first and second laser beam pulses impinge on the surface of the selected structure respective first and second beam spots. Each beam spot encompasses at least the width of the selected link. The first and second beam spots are spatially offset from one another along the length of the selected structure to define an overlapping region covered by both the first and the second beam spots and a total region covered by one or both of the first and second beam spots. The total region is larger than the first beam spot and also larger than the second beam spot. The method sets respective first and second energy values of the first and second laser beam pulses to cause complete depthwise processing of the selected structure across the width of the structure in at least a portion of the total region.
    • 方法和系统使用激光脉冲来处理半导体衬底上或其中的选定结构。 该结构具有表面,宽度和长度。 随着激光脉冲处理所选择的结构,激光脉冲沿着沿扫描光束路径相对于衬底移动的轴传播。 所述方法同时在所选择的结构上产生沿相应的第一和第二激光束轴线在不同的第一和第二位置与所选择的结构相交的第一和第二激光束脉冲。 第一和第二激光束脉冲冲击所选结构的表面上相应的第一和第二光束点。 每个光束点至少包含所选链接的宽度。 第一和第二光束斑点沿着所选择的结构的长度在空间上彼此偏移以限定由第一和第二光束点两者覆盖的重叠区域,以及由第一和第二光束斑点中的一个或两个覆盖的总区域 。 总区域大于第一束斑,并且大于第二束斑。 该方法设置第一和第二激光束脉冲的相应的第一和第二能量值,以便在整个区域的至少一部分中跨结构的宽度对所选结构进行完全深度处理。
    • 45. 发明授权
    • Semiconductor structure processing using multiple laser beam spots overlapping lengthwise on a structure
    • 使用在结构上纵向重叠的多个激光束点的半导体结构处理
    • US07633034B2
    • 2009-12-15
    • US11051261
    • 2005-02-04
    • Kelly J. BrulandBrian W. BairdHo Wai LoRichard S. HarrisYunlong Sun
    • Kelly J. BrulandBrian W. BairdHo Wai LoRichard S. HarrisYunlong Sun
    • B23K26/00
    • B23K26/067B23K26/0604B23K26/0613H01L21/76894H01L23/5258H01L27/1052H01L27/10894H01L2924/0002H01L2924/00
    • Methods and systems use laser pulses to process a selected structure on or within a semiconductor substrate. The structure has a surface, a width, and a length. The laser pulses propagate along axes that move along a scan beam path relative to the substrate as the laser pulses process the selected structure. The method simultaneously generates on the selected structure first and second laser beam pulses that propagate along respective first and second laser beam axes intersecting the selected structure at distinct first and second locations. The first and second laser beam pulses impinge on the surface of the selected structure respective first and second beam spots. Each beam spot encompasses at least the width of the selected link. The first and second beam spots are spatially offset from one another along the length of the selected structure to define an overlapping region covered by both the first and the second beam spots and a total region covered by one or both of the first and second beam spots. The total region is larger than the first beam spot and also larger than the second beam spot. The method sets respective first and second energy values of the first and second laser beam pulses to cause complete depthwise processing of the selected structure across the width of the structure in at least a portion of the total region.
    • 方法和系统使用激光脉冲来处理半导体衬底上或其中的选定结构。 该结构具有表面,宽度和长度。 随着激光脉冲处理所选择的结构,激光脉冲沿着沿扫描光束路径相对于衬底移动的轴传播。 所述方法同时在所选择的结构上产生沿相应的第一和第二激光束轴线在不同的第一和第二位置与所选择的结构相交的第一和第二激光束脉冲。 第一和第二激光束脉冲冲击所选结构的表面上相应的第一和第二光束点。 每个光束点至少包含所选链接的宽度。 第一和第二光束斑点沿着所选择的结构的长度在空间上彼此偏移以限定由第一和第二光束点两者覆盖的重叠区域,以及由第一和第二光束斑点中的一个或两个覆盖的总区域 。 总区域大于第一束斑,并且大于第二束斑。 该方法设置第一和第二激光束脉冲的相应的第一和第二能量值,以便在整个区域的至少一部分中跨结构的宽度对所选结构进行完全深度处理。
    • 47. 发明授权
    • Generating sets of tailored laser pulses
    • 生成一组定制的激光脉冲
    • US07126746B2
    • 2006-10-24
    • US10921765
    • 2004-08-18
    • Yunlong SunRobert F. Hainsey
    • Yunlong SunRobert F. Hainsey
    • H01S3/00B23K26/04
    • H01L23/5258B23K26/0613B23K26/0622B23K2101/40H01L2924/0002H01L2924/00
    • In a master oscillator power amplifier, a driver (208) of a diode laser (202) is specially controlled to generate a set of two or more injection laser pulses that are injected into a power amplifier (204) operated in an unsaturated state to generate a set (50) of laser pulses (52) that replicate the temporal power profile of the injection laser pulses to remove a conductive link (22) and/or its overlying passivation layer (44) in a memory or other IC chip. Each set (50) includes at least one specially tailored pulse (52) and/or two or more pulses (50) having different temporal power profiles. The duration of the set (50) is short enough to be treated as a single “pulse” by conventional positioning systems (380) to perform on-the-fly link removal without stopping.
    • 在主振荡器功率放大器中,特别地控制二极管激光器(202)的驱动器(208),以产生注入到以不饱和状态操作的功率放大器(204)中的两个或更多个注入激光脉冲的集合,以产生 一组(50)激光脉冲(52),其复制所述注入激光脉冲的时间功率分布以去除存储器或其它IC芯片中的导电连接(22)和/或其上覆钝化层(44)。 每个组(50)包括具有不同时间功率分布的至少一个特别定制的脉冲(52)和/或两个或更多个脉冲(50)。 集合(50)的持续时间足够短以被常规定位系统(380)视为单个“脉冲”,以在不停止的情况下执行即时链路去除。
    • 50. 发明授权
    • Laser system and method for selectively trimming films
    • 用于选择性修整薄膜的激光系统和方法
    • US5569398A
    • 1996-10-29
    • US343779
    • 1994-11-22
    • Yunlong SunEd Swenson
    • Yunlong SunEd Swenson
    • H01L27/04B23K26/00B23K26/06B23K26/36H01L21/768H01L21/82H01L21/822H01S3/0915H01S3/13H01S3/16
    • B23K26/06B23K26/0643B23K26/351B23K26/362B23K26/40H01L21/76894B23K2201/34B23K2203/08B23K2203/10B23K2203/12B23K2203/14B23K2203/172B23K2203/26B23K2203/50H01S3/025H01S3/0401H01S3/09415H01S3/11H01S3/1611H01S3/1653Y10S438/94
    • A laser system and processing method exploits the absorption contrast between the materials from which a film and an underlying substrate (26) are made to effectively remove the film from the substrate. Laser output in a wavelength range of 1.2 to 3 .mu.m optimizes the absorption contrast between many resistive or conductive film materials (e.g., metals, metal alloys, polysilicon, polycides, or disilicides) and integrated circuit substrates (e.g., silicon, gallium arsenide, or other semi-conductors) and permits the use of laser output in a wider range of energy or power levels and pulse widths, without risking damage to the substrates or adjacent circuit structures. Existing film processing laser systems can be readily modified to operate in the 1.2 to 3 .mu.m range. The laser system and processing method also exploit a wavelength range in which devices, including any semiconductor material-based devices affected by conventional laser wavelengths and devices having light-sensitive or photo-electronic portions integrated into their circuits, can be effectively functionally trimmed without inducing malfunctions or function shifts in the processed devices, thus allowing faster functional laser processing, easing geometric restrictions on circuit design, and facilitating production of denser and smaller devices.
    • 激光系统和处理方法利用材料之间的吸收对比度,其中膜和下面的基底(26)被制成以有效地从基底去除膜。 在1.2至3微米的波长范围内的激光输出优化了许多电阻或导电膜材料(例如金属,金属合金,多晶硅,多硅化物或二硅化物)和集成电路基板(例如硅,砷化镓, 或其他半导体),并且允许在更宽的能量或功率水平和脉冲宽度范围内使用激光输出,而不会损坏基板或相邻电路结构。 现有的胶片处理激光系统可以容易地修改为在1.2到3μm的范围内操作。 激光系统和处理方法还利用了波长范围,其中包括受传统激光波长影响的任何基于半导体材料的器件和具有集成到其电路中的光敏或光电子部分的器件的器件可以被有效地功能地修整而不诱导 处理的设备中的故障或功能偏移,因此允许更快的功能激光处理,减轻对电路设计的几何限制,并促进生产更致密和更小的设备。