会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • Fully-pinned, flux-closed spin valve
    • 全固定,通量封闭自旋阀
    • US06175475B1
    • 2001-01-16
    • US09085654
    • 1998-05-27
    • Tsann LinDaniele MauriJoseph Francis SmythChing Hwa Tsang
    • Tsann LinDaniele MauriJoseph Francis SmythChing Hwa Tsang
    • G11B539
    • B82Y25/00B82Y10/00G01R33/093G11B5/012G11B5/3903G11B2005/3996
    • A fully-pinned, flux-closed spin valve (SV) magnetoresistive sensor having a reference (pinned) layer with magnetization fixed by a first antiferromagnetic (AFM1) layer, and a keeper layer with magnetization fixed by a second antiferromagnetic (AFM2) layer. The magnetization of the keeper layer is saturated and fixed in an antiparallel orientation to the pinned layer magnetization by an exchange interaction with the AFM2 layer. The magnetic moments of the pinned layer and the keeper layer are approximately matched to form a flux-closed magnetic configuration wherein demagnetizing fields in the pinned layer are largely canceled and magnetostatic interaction with the free layer is reduced. Saturation of the keeper layer magnetization by exchange coupling with the AFM2 layer eliminates or reduces magnetization canting at the edges of the keeper layer which can result in signal field shunting through the keeper layer. AFM1 and AFM2 layers may be formed of the same antiferromagnetic material, such as NiO, or alternatively may be formed of different antiferromagnetic materials, such as Ni—Mn and NiO, respectively.
    • 具有由第一反铁磁(AFM1)层固定的磁化的参考(固定)层的完全固定的磁通闭合自旋阀(SV)磁阻传感器,以及具有由第二反铁磁(AFM2)层固定的磁化的保持层。 通过与AFM2层的交换相互作用,保持层的磁化饱和并且以反平行取向固定到被钉层磁化。 被钉扎层和保持层的磁矩近似匹配以形成磁通闭合磁性构造,其中被钉扎层中的去磁场被大大抵消,并且与自由层的静磁相互作用减小。 通过与AFM2层的交换耦合来保持层层磁化的饱和度消除或减少了在保持层的边缘处的磁化倾斜,这可导致通过保持层的信号场分流。 AFM1和AFM2层可以由相同的反铁磁材料(例如NiO)形成,或者可以分别由不同的反铁磁材料(诸如Ni-Mn和NiO)形成。
    • 43. 发明授权
    • Magnetic tunnel junction magnetoresistive read head with longitudinal
and transverse bias
    • 磁隧道结磁阻读头,具有纵向和横向偏置
    • US06005753A
    • 1999-12-21
    • US87322
    • 1998-05-29
    • Robert Edward Fontana, Jr.Stuart Stephen Papworth ParkinChing Hwa Tsang
    • Robert Edward Fontana, Jr.Stuart Stephen Papworth ParkinChing Hwa Tsang
    • G01R33/06G11B5/39
    • B82Y25/00B82Y10/00G01R33/06G11B5/3903G11B2005/3996
    • A magnetic tunnel junction magnetoresistive read head has one fixed ferromagnetic layer and one generally rectangularly shaped sensing ferromagnetic layer on opposite sides of the tunnel barrier layer, and a biasing ferromagnetic layer located around the side edges and back edges of the sensing ferromagnetic layer. An electrically insulating layer separates the biasing layer from the edges of the sensing layer. The biasing layer is a continuous boundary biasing layer that has side regions and a back region to surround the three edges of the sensing layer. When the biasing layer is a single layer with contiguous side and back regions its magnetic moment can be selected to make an angle with the long edges of the sensing layer. In this manner the biasing layer provides both a transverse bias field to compensate for transverse ferromagnetic coupling and magnetostatic coupling fields acting on the sensing layer to thus provide for a linear response of the head and a longitudinal bias field to stabilize the head. The biasing layer may also be formed with discrete side regions and a back region. The discrete side regions may have a magnetic moment oriented in a different direction from the moment of the back region in order to provide the correct combination of transverse and longitudinal bias fields.
    • 磁性隧道结磁阻读取头在隧道势垒层的相对侧具有一个固定的铁磁层和一个大致矩形的感测铁磁层,以及位于感测铁磁层的侧边缘和后边缘周围的偏置铁磁层。 电绝缘层将偏置层与感测层的边缘分开。 偏置层是连续的边界偏置层,其具有围绕感测层的三个边缘的侧面区域和后部区域。 当偏置层是具有相邻侧面和后部区域的单层时,其磁矩可以被选择成与感测层的长边缘形成一个角度。 以这种方式,偏置层提供横向偏置场以补偿作用在感测层上的横向铁磁耦合和静磁耦合场,从而提供头部的线性响应和纵向偏置场以稳定头部。 偏压层也可以形成有离散的侧部区域和后部区域。 离散的侧部区域可以具有与从后部区域的力矩不同的方向定向的磁矩,以便提供横向和纵向偏置场的正确组合。
    • 44. 发明授权
    • Magnetic tunnel junction magnetoresistive read head with sensing layer
as flux guide
    • 磁性隧道结磁阻读头,传感层作为助焊剂
    • US5898547A
    • 1999-04-27
    • US957699
    • 1997-10-24
    • Robert Edward Fontana, Jr.Stuart Stephen Papworth ParkinChing Hwa Tsang
    • Robert Edward Fontana, Jr.Stuart Stephen Papworth ParkinChing Hwa Tsang
    • G11B5/39G11B5/40G11B5/33
    • G11B5/3916G11B5/3169G11B5/3903G11B5/3967G11B5/40
    • A magnetic tunnel junction (MTJ) magnetoresistive read head for a magnetic recording system has the MTJ sensing or free ferromagnetic layer also functioning as a flux guide to direct magnetic flux from the magnetic recording medium to the tunnel junction. The MTJ fixed ferromagnetic layer has its front edge recessed from the sensing surface of the head. Both the fixed and free ferromagnetic layers are in contact with opposite surfaces of the MTJ tunnel barrier layer but the free ferromagnetic layer extends beyond the back edge of either the tunnel barrier layer or the fixed ferromagnetic layer, whichever back edge is closer to the sensing surface. This assures that the magnetic flux is non-zero in the tunnel junction region. The magnetization direction of the fixed ferromagnetic layer is fixed in a direction generally perpendicular to the sensing surface and thus to the magnetic recording medium, preferably by interfacial exchange coupling with an antiferromagnetic layer. The magnetization direction of the free ferromagnetic layer is aligned in a direction generally parallel to the surface of the medium in the absence of an applied magnetic field and is free to rotate in the presence of applied magnetic fields from the medium. A layer of high coercivity hard magnetic material adjacent the sides of the free ferromagnetic layer longitudinally biases the magnetization of the free ferromagnetic layer in the preferred direction.
    • 用于磁记录系统的磁隧道结(MTJ)磁阻读取头具有MTJ感测或自由铁磁层,还用作磁通指引,以将磁通量从磁记录介质引导到隧道结。 MTJ固定铁磁层的前缘从头部的感测表面凹陷。 固定和自由铁磁层都与MTJ隧道势垒层的相对表面接触,但自由铁磁层延伸超过隧道势垒层或固定铁磁层的后边缘,无论哪个后边缘更靠近感测表面 。 这确保了隧道结区域中的磁通量不为零。 固定铁磁层的磁化方向固定在大致垂直于感测表面的方向上,并因此固定在磁记录介质上,优选地通过与反铁磁层的界面交换耦合。 在没有施加的磁场的情况下,自由铁磁层的磁化方向在大致平行于介质的表面的方向上排列,并且在存在来自介质的施加的磁场的情况下自由旋转。 邻近自由铁磁层侧面的高矫顽磁性硬磁材料层沿优选方向纵向偏置自由铁磁层的磁化。
    • 45. 发明授权
    • Spin valve magnetoresistive sensor with antiparallel pinned layer and
improved exchange bias layer, and magnetic recording system using the
sensor
    • 旋转阀磁阻传感器具有反平行钉扎层和改进的交换偏置层,以及使用传感器的磁记录系统
    • US5701223A
    • 1997-12-23
    • US697396
    • 1996-08-23
    • Robert Edward Fontana, Jr.Bruce Alvin GurneyTsann LinVirgil Simon SperiosuChing Hwa TsangDennis Richard Wilhoit
    • Robert Edward Fontana, Jr.Bruce Alvin GurneyTsann LinVirgil Simon SperiosuChing Hwa TsangDennis Richard Wilhoit
    • G01R33/09G11B5/39H01F10/32H01L43/10
    • B82Y25/00B82Y10/00G01R33/093G11B5/3903H01F10/3272H01L43/10G11B2005/3996
    • A spin valve magnetoresistive (SVMR) sensor uses a laminated antiparallel (AP) pinned layer in combination with an improved antiferromagnetic (AF) exchange biasing layer. The pinned layer comprises two ferromagnetic films separated by a nonmagnetic coupling film such that the magnetizations of the two ferromagnetic films are strongly coupled together antiferromagnetically in an antiparallel orientation. This laminated AP pinned layer is magnetically rigid in the small field excitations required to rotate the SVMR sensor's free layer. When the magnetic moments of the two ferromagnetic layers in this AP pinned layer are nearly the same, the net magnetic moment of the pinned layer is small. However, the exchange field is correspondingly large because it is inversely proportional to the net magnetic moment. The laminated AP pinned layer has its magnetization fixed or pinned by an AF material that is highly corrosion resistant but that has an exchange anisotropy too low to be usable in conventional SVMR sensors. In the preferred embodiment the AF layer is nickel-oxide and is formed on one of the magnetoresistive (MR) shields that serves as the substrate. Thus the AF material also serves as the insulating MR gap material. The location of the AF layer and the laminated AP-pinned layer to which it is exchange coupled on the bottom of the SVMR sensor allows for improved longitudinal biasing of the free layer when the SVMR sensor is fabricated.
    • 自旋阀磁阻(SVMR)传感器使用层叠反平行(AP)钉扎层与改进的反铁磁(AF)交换偏置层组合。 被钉扎层包括由非磁性耦合膜分离的两个铁磁膜,使得两个铁磁膜的磁化强烈耦合在反铁磁反向反平行取向。 该层压AP钉扎层在旋转SVMR传感器自由层所需的小场激励中是磁性刚性的。 当该AP钉扎层中的两个铁磁层的磁矩几乎相同时,被钉扎层的净磁矩小。 然而,交换场相当大,因为它与净磁矩成反比。 层压的AP钉扎层的磁化固定或由AF材料固定,该材料具有高度耐腐蚀性,但具有太低的交换各向异性,无法在传统的SVMR传感器中使用。 在优选实施例中,AF层是氧化镍,并且形成在用作衬底的磁阻(MR)屏蔽之一上。 因此,AF材料也用作绝缘MR间隙材料。 在SVMR传感器的底部上交换耦合的AF层和层压的AP钉扎层的位置允许在制造SVMR传感器时改善自由层的纵向偏置。
    • 48. 发明授权
    • Thin film magnetic recording inductive write head with laminated write gap
    • 薄膜磁记录感应写头与层压写入间隙
    • US06833976B2
    • 2004-12-21
    • US10147565
    • 2002-05-15
    • Yimin HsuChing Hwa Tsang
    • Yimin HsuChing Hwa Tsang
    • G11B523
    • G11B5/3116G11B5/09G11B5/187G11B5/23G11B5/313G11B5/3143G11B5/3146G11B5/3967G11B5/488G11B2005/001G11B2005/0013G11B2005/0026
    • A thin film inductive write head for magnetic recording has a write gap formed as a lamination of alternating layers of a nonmagnetic gap layer and a ferromagnetic spacer layer. There are N gap layers and N−1 spacer layers, with each pole tip of the write head being located adjacent to a gap layer. The spacer layers in the gap structure are formed of a ferromagnetic material with a high saturation moment density (BS) that is close to the BS of the spacer material from which the pole tips are formed. Unlike the pole tips, the spacer layers are not part of a magnetic circuit and are magnetically isolated, i.e., completely surrounded by nonmagnetic gap material. The effect of the spacer layers is to effectively divide the gap into a plurality of smaller gaps. The write head with the laminated gap creates a write bubble that is narrower in the off-track direction and wider in the in-track direction.
    • 用于磁记录的薄膜感应写头具有形成为非磁性间隙层和铁磁间隔层的交替层的叠层的写间隙。 存在N个间隙层和N-1间隔层,写头的每个极尖位于邻近间隙层的位置。 间隙结构中的间隔层由具有高的饱和磁矩密度(BS)的铁磁材料形成,其接近形成极尖的间隔材料的BS。 与极尖不同,间隔层不是磁路的一部分,并且是磁隔离的,即被非磁性间隙材料完全包围。 间隔层的作用是将间隙有效地分成多个较小间隙。 具有层压间隙的写头产生在偏离磁道方向上较窄的写入气泡,并且在轨道内方向上较宽。
    • 50. 发明授权
    • Read transducer and magnetic storage system implementing same
    • 读取传感器和实现相同的磁存储系统
    • US08780507B2
    • 2014-07-15
    • US11966003
    • 2007-12-28
    • Ying HongKochan JuChing Hwa Tsang
    • Ying HongKochan JuChing Hwa Tsang
    • G11B5/33G11B5/127
    • B82Y25/00G01R33/093G01R33/098G11B5/398H01L43/08
    • A transducer according to one embodiment comprises a first ferromagnetic layer; a second ferromagnetic layer; and an electrically conductive layer positioned between the ferromagnetic layers; wherein a length of the first ferromagnetic layer in a first direction parallel to a plane of deposition thereof is greater than a length of the electrically conductive layer in the first direction such that a first end of the first ferromagnetic layer extends beyond an end of the electrically conductive layer in the first direction, wherein an electrical current enters or exits the end of the first ferromagnetic layer that extends beyond the end of the electrically conductive layer in the first direction. Additional transducer structures, and systems implementing such transducers, are also disclosed.
    • 根据一个实施例的换能器包括第一铁磁层; 第二铁磁层; 以及定位在铁磁层之间的导电层; 其中所述第一铁磁层在平行于其沉积平面的第一方向上的长度大于所述导电层在所述第一方向上的长度,使得所述第一铁磁层的第一端延伸超过所述电 导电层,其中电流进入或离开在第一方向延伸超过导电层的端部的第一铁磁层的端部。 还公开了附加的换能器结构和实现这种换能器的系统。