会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • Integrated circuits with substrate protrusions, including (but not limited to) floating gate memories
    • 具有衬底突起的集成电路,包括(但不限于)浮动栅极存储器
    • US07808032B2
    • 2010-10-05
    • US12145681
    • 2008-06-25
    • Yue-Song HeLen Mei
    • Yue-Song HeLen Mei
    • H01L21/8247H01L29/788
    • H01L27/115H01L27/11521H01L29/42324H01L29/7854H01L29/7881
    • A floating gate memory cell's channel region (104) is at least partially located in a fin-like protrusion (110P) of a semiconductor substrate. The floating gate's top surface may come down along at least two sides of the protrusion to a level below the top (110P-T) of the protrusion. The control gate's bottom surface may also comes down to a level below the top of the protrusion. The floating gate's bottom surface may comes down to a level below the top of the protrusion by at least 50% of the protrusion's height. The dielectric (120) separating the floating gate from the protrusion can be at least as thick at the top of the protrusion as at a level (L2) which is below the top of the protrusion by at least 50% of the protrusion's height. A very narrow fin or other narrow feature in memory and non-memory integrated circuits can be formed by providing a first layer (320) and then forming spacers (330) from a second layer without photolithography on sidewalls of features made from the first layer. The narrow fin or other feature are then formed without further photolithography in areas between the adjacent spacers. More particularly, a third layer (340) is formed in these areas, and the first layer and the spacers are removed selectively to the third layer. The third layer is used as a mask to form the narrow features.
    • 浮动栅极存储单元的沟道区域(104)至少部分地位于半导体衬底的鳍状突起(110P)中。 浮栅的顶面可以沿着突起的至少两侧下降到突起的顶部(110P-T)的下方。 控制门的底面也可能下降至低于突起顶部的水平。 浮动门的底面可能下降到突起顶部以下至少50%的高度。 将浮动栅极与突起分离的电介质(120)可以在突起的顶部处至少与在突起的顶部下方的突起高度的至少50%的水平(L2)相同。 存储器和非存储器集成电路中的非常狭窄的鳍或其他窄特征可以通过提供第一层(320)然后从第二层形成间隔物(330)而形成,而不需要在由第一层制成的特征的侧壁上进行光刻。 然后在相邻间隔物之间​​的区域中形成窄鳍片或其它特征,而无需进一步的光刻。 更具体地,在这些区域中形成第三层(340),并且第一层和间隔物被选择性地去除到第三层。 第三层用作掩模以形成窄特征。
    • 43. 发明申请
    • MEMORY DEVICES WITH SPLIT GATE AND BLOCKING LAYER
    • 具有分离门和阻塞层的存储器件
    • US20090101961A1
    • 2009-04-23
    • US11876557
    • 2007-10-22
    • Yue-Song HeLen Mei
    • Yue-Song HeLen Mei
    • H01L29/788H01L21/336
    • H01L29/7881H01L29/42328H01L29/42344H01L29/66825H01L29/66833H01L29/792
    • The present disclosure provides a memory device having a cell stack and a select gate formed adjacent to the cell stack. The cell stack includes a tunneling dielectric layer, a charge storage layer, a blocking dielectric layer, a tantalum-nitride layer, and a control gate layer. When a positive bias is applied to the control gate and the select gate, negative charges are injected from a channel region of a substrate through the tunneling dielectric layer and into the charge storage layer to thereby store the negative charges in the charge storage layer. When a negative bias is applied to the control gate, negative charges are tunneled from the charge storage layer to the channel region of the substrate through the tunneling dielectric layer.
    • 本公开提供了一种存储器件,其具有与单元堆叠相邻形成的单元堆叠和选择栅极。 电池堆包括隧道介电层,电荷存储层,阻挡介电层,氮化钽层和控制栅层。 当向控制栅极和选择栅极施加正偏压时,从衬底的沟道区域通过隧道电介质层注入负电荷并进入电荷存储层,从而将负电荷存储在电荷存储层中。 当向控制栅极施加负偏压时,负电荷通过隧道电介质层从电荷存储层隧穿到衬底的沟道区。
    • 48. 发明授权
    • Memory array with memory cells having reduced short channel effects
    • 具有存储单元的存储器阵列具有减少的短通道效应
    • US06963106B1
    • 2005-11-08
    • US10839626
    • 2004-05-04
    • Richard FastowYue-Song HeKazuhiro MizutaniTimothy Thurgate
    • Richard FastowYue-Song HeKazuhiro MizutaniTimothy Thurgate
    • H01L21/8247H01L27/115H01L21/788
    • H01L27/11521H01L27/115
    • According to one exemplary embodiment, a method for fabricating a floating gate memory array comprises a step of removing a dielectric material from an isolation region situated in a substrate to expose a trench, where the trench is situated between a first source region and a second source region, where the trench defines sidewalls in the substrate. The method further comprises implanting an N type dopant in the first source region, the second source region, and the sidewalls of the trench, where the N type dopant forms an N+ type region. The method further comprises implanting a P type dopant in the first source region, the second source region, and the sidewalls of the trench, where the P type dopant forms a P type region, and where the P type region is situated underneath the N+ type region.
    • 根据一个示例性实施例,一种用于制造浮动栅极存储器阵列的方法包括从位于衬底中的隔离区域去除介电材料以暴露沟槽的步骤,其中沟槽位于第一源区域和第二源极之间 区域,其中沟槽限定衬底中的侧壁。 该方法还包括在第一源极区域,第二源极区域和沟槽的侧壁中注入N型掺杂剂,其中N型掺杂剂形成N +型区域。 该方法还包括在第一源极区域,第二源极区域和沟槽的侧壁中注入P型掺杂剂,其中P型掺杂剂形成P型区域,并且其中P型区域位于N +型下方 地区。
    • 49. 发明授权
    • Reduced silicon gouging and common source line resistance in semiconductor devices
    • 在半导体器件中减少硅沟槽和普通源极线电阻
    • US06953752B1
    • 2005-10-11
    • US10358756
    • 2003-02-05
    • Yue-Song HeSameer HaddadZhi-Gang WangRichard Fastow
    • Yue-Song HeSameer HaddadZhi-Gang WangRichard Fastow
    • H01L21/311H01L21/8247
    • H01L27/11521
    • In the present method of undertaking a self aligned source etch of a semiconductor structure, a substrate has oxide thereon. First and second adjacent stacked gate structures are provided on the substrate. Oxide spacers are provided on the respective first and second adjacent sides of the first and second gate stacked structures, and polysilicon spacers are provided on the respective oxide spacers. A self aligned source etch is undertaken using the gate structures, oxide spacers, and polysilicon spacers as a mask. The polysilicon spacers are then removed, and metal, for example cobalt, is provided on the substrate, using the oxide spacers as a mask. A silicidation step is undertaken to form metal silicide common source line on the substrate.
    • 在进行半导体结构的自对准源蚀刻的本方法中,衬底在其上具有氧化物。 第一和第二相邻的堆叠栅极结构设置在基板上。 在第一和第二栅极堆叠结构的相应的第一和第二相邻侧上设置氧化物间隔物,并且在各个氧化物间隔物上设置多晶硅间隔物。 使用栅极结构,氧化物间隔物和多晶硅间隔物作为掩模进行自对准源蚀刻。 然后去除多晶硅间隔物,并且使用氧化物间隔物作为掩模在衬底上提供金属(例如钴)。 进行硅化步骤以在衬底上形成金属硅化物共同源极线。