会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Systems and methods for discriminative density model selection
    • 用于区分密度模型选择的系统和方法
    • US07548856B2
    • 2009-06-16
    • US10441470
    • 2003-05-20
    • Bo ThiessonChristopher A. Meek
    • Bo ThiessonChristopher A. Meek
    • G10L15/06
    • G06K9/6226G06K9/6296G10L15/08
    • The present invention utilizes a discriminative density model selection method to provide an optimized density model subset employable in constructing a classifier. By allowing multiple alternative density models to be considered for each class in a multi-class classification system and then developing an optimal configuration comprised of a single density model for each class, the classifier can be tuned to exhibit a desired characteristic such as, for example, high classification accuracy, low cost, and/or a balance of both. In one instance of the present invention, error graph, junction tree, and min-sum propagation algorithms are utilized to obtain an optimization from discriminatively selected density models.
    • 本发明利用鉴别密度模型选择方法来提供可用于构建分类器的优化密度模型子集。 通过允许在多类分类系统中为每个类别考虑多个替代密度模型,然后开发由每个类别的单个密度模型组成的最佳配置,分类器可以被调谐以呈现期望的特性,例如 ,分类精度高,成本低,和/或两者的平衡。 在本发明的一个实例中,使用误差图,结树和最小和传播算法来从区分选择的密度模型中获得优化。
    • 33. 发明授权
    • Apparatus and method for the analysis of a process having parameter-based faults
    • 用于分析具有参数故障的过程的装置和方法
    • US07536371B2
    • 2009-05-19
    • US11633455
    • 2006-12-05
    • Jehuda HartmanEyal BrillYuri Kokolov
    • Jehuda HartmanEyal BrillYuri Kokolov
    • G06F17/00G06N5/02
    • G05B23/024G05B23/0248G05B23/0272G06K9/6226G06K9/6284G06Q10/06
    • An apparatus for the analysis of a process having parameter-based faults includes: a parameter value inputer configured for inputting values of at least one process parameter, a fault detector, configured for detecting the occurrence of a fault, a learning file creator associated with the parameter value inputer and the fault detector, configured for separating the input values into a first learning file and a second learning file, the first learning file comprising input values from a collection period preceding each of the detected faults, and the second learning file comprising input values input outside the collection periods, and a learning file analyzer associated with the learning file creator, configured for performing a separate statistical analysis of the first and second learning files, thereby to asses a process status.
    • 一种用于分析具有基于参数的故障的处理的装置包括:参数值输入器,被配置为输入至少一个过程参数的值,被配置为检测故障发生的故障检测器,与该故障相关联的学习文件创建器 参数值输入器和故障检测器,被配置为将输入值分离成第一学习文件和第二学习文件,第一学习文件包括来自检测到的每个故障之前的收集周期的输入值,以及包括输入的第二学习文件 在收集周期之外输入的值以及与学习文件创建者相关联的学习文件分析器,被配置为执行第一和第二学习文件的单独的统计分析,从而评估处理状态。
    • 35. 发明授权
    • Methods for identifying discrete populations (e.g., clusters) of data within a flow cytometer multi-dimensional data set
    • 用于识别流式细胞仪多维数据集中的数据的离散群体(例如,簇)的方法
    • US07299135B2
    • 2007-11-20
    • US11271316
    • 2005-11-10
    • Edward Thayer
    • Edward Thayer
    • G01N33/48G01N33/50
    • G01N15/1459G01N2015/008G01N2015/1006G01N2015/1402G01N2015/1477G06F19/00G06K9/00147G06K9/6226G06K9/626G16H50/20G16H50/70
    • Systems and methods for identifying populations of events in a multi-dimensional data set are described. The populations may, for example, be sets or clusters of data representing different white blood cell components in sample processed by a flow cytometer. The methods use a library consisting of one or more one finite mixture models, each model representing multi-dimensional Gaussian probability distributions with a density function for each population of events expected in the data set. The methods further use an expert knowledge set including one or more data transformations and one or more logical statements. The transformations and logical statements encode a priori expectations as to the populations of events in the data set. The methods further use program code by which a computer may operate on the data, a finite mixture model selected from the library, and the expert knowledge set to thereby identify populations of events in the data set.
    • 描述用于识别多维数据集中的事件群体的系统和方法。 例如,种群可以是由流式细胞仪处理的样品中代表不同白细胞组分的数据集或簇。 该方法使用由一个或多个有限混合模型组成的库,每个模型表示数据集中预期的每个事件群的密度函数的多维高斯概率分布。 所述方法还使用包括一个或多个数据变换和一个或多个逻辑语句的专家知识集。 变换和逻辑语句编码了对数据集中的事件群体的先验期望。 这些方法还使用计算机可以对数据进行操作的程序代码,从库中选择的有限混合模型和专家知识集合,从而识别数据集中的事件群体。
    • 37. 发明授权
    • Method and apparatus for object identification, classification or verification
    • 用于物体识别,分类或验证的方法和装置
    • US07245767B2
    • 2007-07-17
    • US10645084
    • 2003-08-21
    • Pedro J. MorenoPurdy Ho
    • Pedro J. MorenoPurdy Ho
    • G06K9/62
    • G06K9/6226
    • There is provided a method for classifying, identifying or verifying an object by representing the object by a respective sequence of vectors, modeling the sequence of vectors with a respective generative model such that the object is represented by the generative model, computing the distances between the generative models to form one or many kernel matrices based on the distance metric, and using the kernel matrices to classify, identify or verify the object. There is provided a system for determining a classification of an object having a representation module for representing an object by a respective sequence of vectors, a modeling module for modeling the sequence of vectors with a respective generative model such that the object is represented by the generative model, a distance computing module for calculating the distances between the generative models to form one or many kernel matrices based on the distance metric, and a determination module for classifying, identifying or verifying the object based on the kernel matrices.
    • 提供了一种用于通过用相应的向量序列表示对象来分类,识别或验证对象的方法,用相应的生成模型建模向量序列,使得对象由生成模型表示,计算 生成模型基于距离度量形成一个或多个核心矩阵,并使用内核矩阵来分类,识别或验证对象。 提供了一种用于确定具有用于通过相应的向量序列表示对象的表示模块的对象的分类的系统,用于使用相应的生成模型对向量序列进行建模的建模模块,使得该对象由生成 模型,用于基于距离度量计算生成模型之间的距离以形成一个或多个核心矩阵的距离计算模块,以及用于基于所述核心矩阵对所述对象进行分类,识别或验证的确定模块。