会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Low distortion video analog-to-digital converter
    • 低失真视频模数转换器
    • US06353405B1
    • 2002-03-05
    • US09607095
    • 2000-06-29
    • Ta-yung YangJenn-yu G. Lin
    • Ta-yung YangJenn-yu G. Lin
    • H03M112
    • H03M1/1028H03M1/12
    • An analog to digital video converter is made of a differential correlated double sampling (DCDS) module, a DC bias circuit, an adjustment module and an analog-to-digital converter. The DCDS module samples a red, a green, and a blue analog signal respectively with a delay time, and then selects one of the sampled signals for outputting. The DC bias circuit is connected to the DCDS module for performing an analog addition to the output signal of the DCDS module. The adjustment module converts the digital adjustment data to an analog adjustable reference voltage. The analog-to-digital converter is connected to the output of the DC bias circuit and the adjustment module. By referring the adjustable reference voltage, the analog-to-digital converter converts the analog input signal to a digital output signal. Therefore, the analog input signal is equivalently adjusted by scaling the adjustable reference voltage.
    • 模数转换器由差分相关双采样(DCDS)模块,直流偏置电路,调节模块和模数转换器组成。 DCDS模块以延迟时间分别采样一个红色,绿色和蓝色模拟信号,然后选择一个采样信号进行输出。 DC偏置电路连接到DCDS模块,用于对DCDS模块的输出信号进行模拟加法。 调整模块将数字调节数据转换为模拟可调参考电压。 模数转换器连接到直流偏置电路和调节模块的输出端。 通过参考可调参考电压,模数转换器将模拟输入信号转换为数字输出信号。 因此,通过缩放可调参考电压来等效地调整模拟输入信号。
    • 34. 发明授权
    • Switching control circuit for primary-side controlled power converters
    • 初级侧电源转换器的开关控制电路
    • US07362592B2
    • 2008-04-22
    • US10943318
    • 2004-09-16
    • Ta-yung YangGuo-Kiang HungJenn-yu G. LinChuh-Ching LiShao-Wei Chiu
    • Ta-yung YangGuo-Kiang HungJenn-yu G. LinChuh-Ching LiShao-Wei Chiu
    • H02M3/335
    • H02M3/33507
    • The present invention discloses a switching control circuit for a primary-side controlled power converter. A voltage-waveform detector produces a voltage-feedback signal and a discharge-time signal. A current-waveform detector generates a current-waveform signal by measuring a primary-side switching current. An integrator generates a current-feedback signal by integrating the current-waveform signal with the discharge time. A time constant of the integrator is correlated with the switching frequency, thus the current-feedback signal is proportional to an output current of the power converter. A PWM circuit controls the pulse width of the switching signal in response to the outputs of a voltage-loop error amplifier and a current-loop error amplifier. The output voltage and the maximum output current of the power converter are therefore regulated.
    • 本发明公开了一种用于初级侧受控电力转换器的开关控制电路。 电压波形检测器产生电压反馈信号和放电时间信号。 电流波形检测器通过测量初级侧开关电流产生电流波形信号。 积分器通过将电流波形信号与放电时间进行积分来产生电流反馈信号。 积分器的时间常数与开关频率相关,因此电流反馈信号与功率转换器的输出电流成正比。 PWM电路响应于电压环路误差放大器和电流环路误差放大器的输出来控制开关信号的脉冲宽度。 因此调节功率转换器的输出电压和最大输出电流。
    • 37. 发明授权
    • Switched charge multiplier-divider
    • 开关电荷倍增器
    • US06812769B1
    • 2004-11-02
    • US10640424
    • 2003-08-12
    • Ta-yung YangJenn-yu G. LinRui-Hong Lu
    • Ta-yung YangJenn-yu G. LinRui-Hong Lu
    • G06G712
    • G06G7/16Y02P80/112
    • The switched charge multiplier-divider according to the present invention is constructed of CMOS devices. Capacitor charge theory is employed to implement the circuit of the switched charge multiplier-divider. The switched charge multiplier-divider includes an output capacitor and controls the voltage across the output capacitor, so that it is proportional to the product of the charge current and the charge-time interval. The switched charge multiplier-divider is ideal for use in the power factor correction (PFC) of switching mode power supplies. Potentially, it can also be applied to automatic gain control (AGC) circuits.
    • 根据本发明的开关电荷倍增器分频器由CMOS器件构成。 采用电容充电理论来实现开关电荷分频器的电路。 开关电荷倍增器分压器包括输出电容器并控制输出电容器两端的电压,使其与充电电流和充电时间间隔的乘积成比例。 开关电荷乘法器分频器是开关电源功率因数校正(PFC)的理想选择。 潜在地,它也可以应用于自动增益控制(AGC)电路。
    • 39. 发明授权
    • Electrostatic discharge protection semiconductor structure
    • 静电放电保护半导体结构
    • US07615826B2
    • 2009-11-10
    • US11427773
    • 2006-06-29
    • Chih-Feng HuangTuo-Hsin ChienJenn-Yu G. LinTa-yung Yang
    • Chih-Feng HuangTuo-Hsin ChienJenn-Yu G. LinTa-yung Yang
    • H01L23/62
    • H01L27/0259
    • An electrostatic discharge (ESD) protection device with adjustable single-trigger or multi-trigger voltage is provided. The semiconductor structure has multi-stage protection semiconductor circuit function and adjustable discharge capacity. The single-trigger or multi-trigger semiconductor structure may be fabricated by using the conventional semiconductor process, and can be applied to IC semiconductor design and to effectively protect the important semiconductor devices and to prevent the semiconductor devices from ESD damage. In particular, the present invention can meet the requirements of high power semiconductor device and has better protection function compared to conventional ESD protection circuit. In the present invention, a plurality of N-wells or P-wells connected in parallel are used to adjust the discharge capacity of various wells in the P-substrate so as to improve the ESD protection capability and meet different power standards.
    • 提供具有可调单触发或多触发电压的静电放电(ESD)保护装置。 半导体结构具有多级保护半导体电路功能和可调放电容量。 单触发或多触发半导体结构可以通过使用传统的半导体工艺制造,并且可以应用于IC半导体设计并且有效地保护重要的半导体器件并且防止半导体器件受到ESD损坏。 特别地,本发明可以满足大功率半导体器件的要求,与传统的ESD保护电路相比具有更好的保护功能。 在本发明中,使用并联连接的多个N阱或P阱来调整P基板中的各个阱的放电容量,以提高ESD保护能力并满足不同的功率标准。
    • 40. 发明授权
    • CMOS compatible process with different-voltage devices
    • CMOS兼容过程与不同电压器件
    • US07205201B2
    • 2007-04-17
    • US10914943
    • 2004-08-09
    • Chih-Feng HuangTa-yung YangJenn-yu G. LinTuo-Hsin Chien
    • Chih-Feng HuangTa-yung YangJenn-yu G. LinTuo-Hsin Chien
    • H01L21/8234
    • H01L21/823814H01L21/823857H01L21/823892
    • A method of manufacturing different-voltage devices mainly comprises forming at least one high-voltage well in high-voltage device regions, at least one N-well in low-voltage device regions, at least one P-well in low-voltage device regions, source/drain wells in high-voltage device regions, and isolation wells in isolation regions in a p-type substrate. The breakdown voltage is adjusted by modulating the ion doping profile. Furthermore, parameters of implanting conductive ions are adjusted for implanting conductive ions into both high-voltage device regions and low-voltage device regions. The isolation wells formed in isolation regions between devices are for separating device formed over high-voltage device regions and device formed over low-voltage device regions. The thickness of a HV gate oxide layer is thicker than the thickness of an LV gate oxide layer for modulating threshold voltages of high-voltage devices and low-voltage devices.
    • 一种制造不同电压装置的方法主要包括在高电压装置区域中形成至少一个高电压阱,在低电压装置区域中形成至少一个N阱,在低电压装置区域中形成至少一个P阱 ,高压器件区域中的源/漏极阱以及p型衬底中的隔离区中的隔离阱。 通过调制离子掺杂分布来调整击穿电压。 此外,调整注入导电离子的参数,以将导电离子注入到高电压器件区域和低电压器件区域中。 在器件之间的隔离区域中形成的隔离阱用于在高电压器件区域上形成的分离器件和在低电压器件区域上形成的器件。 HV栅极氧化物层的厚度比用于调制高电压器件和低电压器件的阈值电压的LV栅极氧化物层的厚度厚。