会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 32. 发明授权
    • Method of making amorphous semiconductor alloys and devices using
microwave energy
    • 制造使用微波能量的非晶半导体合金和器件的方法
    • US4517223A
    • 1985-05-14
    • US423424
    • 1982-09-24
    • Stanford R. OvshinskyDavid D. AllredLee WalterStephen J. Hudgens
    • Stanford R. OvshinskyDavid D. AllredLee WalterStephen J. Hudgens
    • C23C16/30C23C16/50C23C16/511H01J37/32H01L21/205H01L31/04C23C11/02
    • H01J37/3222C23C16/511H01J37/32192H01J37/32275H01L21/02381H01L21/02425H01L21/02532H01L21/02576H01L21/02579H01L21/0262
    • A process for making amorphous semiconductor alloy films and devices at high deposition rates utilizes microwave energy to form a deposition plasma. The alloys exhibit high quality electronic properties suitable for many applications including photovoltaic applications.The process includes the steps of providing a source of microwave energy, coupling the microwave energy into a substantially enclosed reaction vessel containing the substrate onto which the amorphous semiconductor film is to be deposited, and introducing into the vessel reaction gases including at least one semiconductor containing compound. The microwave energy and the reaction gases form a glow discharge plasma within the vessel to deposit an amorphous semiconductor film from the reaction gases onto the substrate. The reactions gases can include silane (SiH.sub.4), silicon tetrafluoride (SiF.sub.4), silane and silicon tetrafluoride, silane and germane (GeH.sub.4), and silicon tetrafluoride and germane. The reaction gases can also include germane or germanium tetrafluoride (GeF.sub.4). To all of the foregoing, hydrogen (H.sub.2) can also be added. Dopants, either p-type or n-type can also be added to the reaction gases to form p-type or n-type alloy films, respectively. Also, band gap increasing elements such as carbon or nitrogen can be added in the form of, for example, methane or ammonia gas to widen the band gap of the alloys.
    • 制造非晶半导体合金膜和高沉积速率的器件的方法利用微波能量来形成沉积等离子体。 该合金表现出高质量的电子性能,适用于许多应用,包括光伏应用。 该方法包括以下步骤:提供微波能量源,将微波能量耦合到基本上封闭的反应容器中,所述反应容器含有要沉积非晶半导体膜的衬底,并将包含至少一个含有 复合。 微波能量和反应气体在容器内形成辉光放电等离子体,以将非晶半导体膜从反应气体沉积到衬底上。 反应气体可以包括硅烷(SiH 4),四氟化硅(SiF 4),硅烷和四氟化硅,硅烷和锗烷(GeH 4)以及四氟化硅和锗烷。 反应气体还可以包括锗烷或四氟化锗(GeF 4)。 对于所有这些,也可以加入氢(H 2)。 也可以将p型或n型掺杂剂添加到反应气体中以分别形成p型或n型合金膜。 此外,带隙增加元素如碳或氮可以以例如甲烷或氨气的形式加入,以加宽合金的带隙。
    • 37. 发明授权
    • Improved method of making a photoconductive member
    • 改进的制造感光体的方法
    • US4715927A
    • 1987-12-29
    • US941244
    • 1986-11-21
    • Annette G. JohncockStephen J. Hudgens
    • Annette G. JohncockStephen J. Hudgens
    • C23C16/511H01L31/09H01L31/20C30B25/02
    • H01L31/095C23C16/511H01L31/202Y02E10/50Y02P70/521
    • A process for making photoconductive semiconductor alloys and members with high reaction gas conversion efficiencies and at high deposition rates utilizes microwave energy to form a deposition plasma. The high deposition rates and high gas conversion efficiencies allow photoconductive members to be formed of amorphous semiconductor alloys at commercially viable rates.The process includes coupling microwave energy into a substantially enclosed reaction vessel containing a substrate and depositing amorphous photoconductive alloys onto the substrate from a reaction gas introduced into the vessel. The photoconductive member includes a bottom blocking layer, a photoconductive layer and a top blocking layer. The photoconductive member can be formed in a negative or positive charge type configuration. The members can include a top blocking enhancement layer and/or an improved infrared photoresponsive layer.
    • 用于制造光导半导体合金和具有高反应气体转化效率和高沉积速率的部件的方法利用微波能量来形成沉积等离子体。 高沉积速率和高气体转换效率使得光电导元件以商业上可行的速率由非晶半导体合金形成。 该方法包括将微波能量耦合到包含基底的基本封闭的反应容器中,并将非晶态光导电合金从引入容器的反应气体沉积到基底上。 感光体包括底部阻挡层,光电导层和顶部阻挡层。 感光体可以形成为负电荷型或正电荷型。 构件可以包括顶部阻挡增强层和/或改进的红外光响应层。