会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Hard biased materials for recording head applications
    • 用于记录头应用的硬偏置材料
    • US07327540B2
    • 2008-02-05
    • US10858029
    • 2004-06-01
    • Yun-Fei LiKunliang ZhangChyu-Jiuh Torng
    • Yun-Fei LiKunliang ZhangChyu-Jiuh Torng
    • G11B5/33G11B5/127G11B5/39
    • G11B5/39Y10T428/11Y10T428/115
    • A hard bias layer that forms an abutting junction with a free layer in a GMR element and is comprised of FePtCu or FePtCuX where X is B, C, O, Si, or N is disclosed. The FePtCu layer has a composition of about 45 atomic % Fe, 45 atomic % Pt, and 10 atomic % Cu and does not require a seed layer to achieve an ordered structure. The FePtCu layer is annealed at a temperature of about 280° C. and has an Hc value more than double that of a conventional CoCrPt hard bias layer with a similar thickness. Since the FePtCu hard bias layer adjoins a free layer, it has a higher sensor edge pinning efficiency than a configuration with a CoCrPt layer on a seed layer. The novel hard bias layer is compatible with either a top or bottom spin valve structure in a GMR sensor.
    • 公开了与GMR元件中的自由层形成邻接连接并由FePtCu或FePtCuX组成的硬偏置层,其中X是B,C,O,Si或N。 FePtCu层具有约45原子%Fe,45原子%Pt和10原子%Cu的组成,并且不需要种子层来实现有序结构。 FePtCu层在约280℃的温度下进行退火,并且其Hc值大于具有相似厚度的常规CoCrPt硬偏压层的Hc值的两倍以上。 由于FePtCu硬偏置层与自由层相邻,因此与种子层上的CoCrPt层的配置相比,传感器边缘钉扎效率更高。 新颖的硬偏置层与GMR传感器中的顶部或底部自旋阀结构兼容。
    • 34. 发明申请
    • Hard biased materials for recording head applications
    • 用于记录头应用的硬偏置材料
    • US20050264957A1
    • 2005-12-01
    • US10858029
    • 2004-06-01
    • Yun-Fei LiKunliang ZhangChyu-Jiuh Torng
    • Yun-Fei LiKunliang ZhangChyu-Jiuh Torng
    • G11B5/127G11B5/33G11B5/39
    • G11B5/39Y10T428/11Y10T428/115
    • A hard bias layer that forms an abutting junction with a free layer in a GMR element and is comprised of FePtCu or FePtCuX where X is B, C, O, Si, or N is disclosed. The FePtCu layer has a composition of about 45 atomic % Fe, 45 atomic % Pt, and 10 atomic % Cu and does not require a seed layer to achieve an ordered structure. The FePtCu layer is annealed at a temperature of about 280° C. and has an Hc value more than double that of a conventional CoCrPt hard bias layer with a similar thickness. Since the FePtCu hard bias layer adjoins a free layer, it has a higher sensor edge pinning efficiency than a configuration with a CoCrPt layer on a seed layer. The novel hard bias layer is compatible with either a top or bottom spin valve structure in a GMR sensor.
    • 公开了与GMR元件中的自由层形成邻接连接并由FePtCu或FePtCuX组成的硬偏置层,其中X是B,C,O,Si或N。 FePtCu层具有约45原子%Fe,45原子%Pt和10原子%Cu的组成,并且不需要种子层来实现有序结构。 FePtCu层在约280℃的温度下进行退火,并且其Hc值大于具有相似厚度的常规CoCrPt硬偏压层的Hc值的两倍以上。 由于FePtCu硬偏置层与自由层相邻,因此与种子层上的CoCrPt层的配置相比,传感器边缘钉扎效率更高。 新颖的硬偏置层与GMR传感器中的顶部或底部自旋阀结构兼容。
    • 35. 发明授权
    • Abutted exchange bias design for sensor stabilization
    • 传感器稳定的基准交换偏置设计
    • US07283337B2
    • 2007-10-16
    • US11074270
    • 2005-03-04
    • Masanori SakaiKunliang ZhangKenichi TakanoChyu-Jiuh TorngYunfei LiPo-Kang Wang
    • Masanori SakaiKunliang ZhangKenichi TakanoChyu-Jiuh TorngYunfei LiPo-Kang Wang
    • G11B5/127
    • G11B5/3932
    • A hard bias (HB) structure for biasing a free layer in a MR sensor within a magnetic read head is comprised of a main biasing layer with a large negative magnetostriction (λS) value. Compressive stress in the device after lapping induces a strong in-plane anisotropy that effectively provides a longitudinal bias to stabilize the sensor. The main biasing layer is formed between two FM layers, and at least one AFM layer is disposed above the upper FM layer or below the lower FM layer. Additionally, there may be a Ta/Ni or Ta/NiFe seed layer as the bottom layer in the HB structure. Compared with a conventional abutted junction exchange bias design, the HB structure described herein results in higher output amplitude under similar asymmetry sigma and significantly decreases sidelobe occurrence. Furthermore, smaller MRWu with a similar track width is achieved since the main biasing layer acts as a side shield.
    • 用于偏置磁读头内的MR传感器中的自由层的硬偏置(HB)结构包括具有大的负磁致伸缩(λS S S S S)值的主偏置层。 研磨后装置中的压缩应力引起强的面内各向异性,其有效地提供纵向偏压以稳定传感器。 主偏置层形成在两个FM层之间,并且至少一个AFM层设置在上FM层上方或下FM层的下方。 另外,可以存在作为HB结构中的底层的Ta / Ni或Ta / NiFe种子层。 与传统的邻接结交换偏置设计相比,本文所述的HB结构在类似的不对称西格玛下产生更高的输出幅度,并显着降低旁瓣发生。 此外,由于主偏置层用作侧屏蔽,所以实现了具有相似轨道宽度的较小MRWu。
    • 36. 发明申请
    • Laminated film for head applications
    • 用于头部应用的层压膜
    • US20090009907A1
    • 2009-01-08
    • US11825034
    • 2007-07-03
    • Kunliang ZhangMin ZhengMin LiChen-Jung ChienCherng-Chyi Han
    • Kunliang ZhangMin ZhengMin LiChen-Jung ChienCherng-Chyi Han
    • G11B5/127G11B5/147
    • G11B5/3116G11B5/1278
    • A laminated main pole layer is disclosed in which a non-AFC scheme is used to break the magnetic coupling between adjacent high moment layers and reduce remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. An amorphous material layer with a thickness of 3 to 20 Angstroms and made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, or Si is inserted between adjacent high moment stacks. The laminated structure also includes an alignment layer below each high moment layer within each stack. In one embodiment, a Ru coupling layer is inserted between two high moment layers in each stack to introduce an AFC scheme. An uppermost Ru layer is used as a CMP stop layer. A post annealing process may be employed to further reduce the anisotropy field (Hk).
    • 公开了一种层叠主极层,其中使用非AFC方案来破坏相邻的高力矩层之间的磁耦合,并且在保持高磁矩的同时降低硬轴方向的剩磁,并实现Hch,Hce和 Hk。 由Hf,Zr,Ta,Al,Mg,Zn或Si中的一种或多种的氧化物,氮化物或氧氮化物形成的厚度为3〜20埃的无定形材料层插入相邻的高强度叠层之间。 层叠结构还包括在每个堆叠内的每个高力矩层下面的对准层。 在一个实施例中,Ru耦合层插入每个堆叠中的两个高矩层之间以引入AFC方案。 使用最上层的Ru层作为CMP停止层。 可以采用后退火工艺来进一步降低各向异性场(Hk)。
    • 37. 发明授权
    • Laminated film for head applications
    • 用于头部应用的层压膜
    • US07773341B2
    • 2010-08-10
    • US11825034
    • 2007-07-03
    • Kunliang ZhangMin ZhengMin LiChen-Jung ChienCherng-Chyi Han
    • Kunliang ZhangMin ZhengMin LiChen-Jung ChienCherng-Chyi Han
    • G11B5/33
    • G11B5/3116G11B5/1278
    • A laminated main pole layer is disclosed in which a non-AFC scheme is used to break the magnetic coupling between adjacent high moment layers and reduce remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. An amorphous material layer with a thickness of 3 to 20 Angstroms and made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, or Si is inserted between adjacent high moment stacks. The laminated structure also includes an alignment layer below each high moment layer within each stack. In one embodiment, a Ru coupling layer is inserted between two high moment layers in each stack to introduce an AFC scheme. An uppermost Ru layer is used as a CMP stop layer. A post annealing process may be employed to further reduce the anisotropy field (Hk).
    • 公开了一种层叠主极层,其中使用非AFC方案来破坏相邻的高力矩层之间的磁耦合,并且在保持高磁矩的同时降低硬轴方向的剩磁,并实现Hch,Hce和 Hk。 由Hf,Zr,Ta,Al,Mg,Zn或Si中的一种或多种的氧化物,氮化物或氧氮化物形成的厚度为3〜20埃的无定形材料层插入相邻的高强度叠层之间。 层叠结构还包括在每个堆叠内的每个高力矩层下面的对准层。 在一个实施例中,Ru耦合层插入每个堆叠中的两个高矩层之间以引入AFC方案。 使用最上层的Ru层作为CMP停止层。 可以采用后退火工艺来进一步降低各向异性场(Hk)。