会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 34. 发明申请
    • METHOD OF MANUFACTURING SEMICONDUCTOR WAFER, AND COMPOSITE BASE AND COMPOSITE SUBSTRATE FOR USE IN THAT METHOD
    • 制造半导体波形的方法以及用于该方法的复合基底和复合基板
    • US20120228613A1
    • 2012-09-13
    • US13107286
    • 2011-05-13
    • Yuki SEKIIssei SatohKoji UematsuYoshiyuki Yamamoto
    • Yuki SEKIIssei SatohKoji UematsuYoshiyuki Yamamoto
    • H01L29/04B32B3/00H01L27/12H01L29/02H01L21/762H01L29/22
    • H01L29/0684B32B2264/102B32B2307/704B32B2457/14H01L21/76254
    • A method of manufacturing a semiconductor wafer of the present invention includes the steps of: obtaining a composite base by forming a base surface flattening layer having a surface RMS roughness of not more than 1.0 nm on a base; obtaining a composite substrate by attaching a semiconductor crystal layer to a side of the composite base where the base surface flattening layer is located; growing at least one semiconductor layer on the semiconductor crystal layer of the composite substrate; and obtaining the semiconductor wafer including the semiconductor crystal layer and the semiconductor layer by removing the base surface flattening layer by wet etching and thereby separating the semiconductor crystal layer from the base. Thus, a method of manufacturing a semiconductor wafer capable of efficiently manufacturing the semiconductor wafer regardless of the type of a base, and a composite base and a composite substrate suitably used in that manufacturing method are provided to efficiently manufacture a semiconductor device.
    • 本发明的制造半导体晶片的方法包括以下步骤:通过在基底上形成表面RMS粗糙度不大于1.0nm的基面平坦化层来获得复合基底; 通过将半导体晶体层附着到所述复合基底的所述基面平坦化层所在的一侧来获得复合基板; 在复合衬底的半导体晶体层上生长至少一个半导体层; 以及通过湿法蚀刻去除基底表面平坦化层,从而将半导体晶体层与基底分离,从而获得包括半导体晶体层和半导体层的半导体晶片。 因此,提供一种制造半导体晶片的方法,而不管基底的类型如何,以及适用于该制造方法的复合基底和复合基底都能有效地制造半导体晶片,以有效地制造半导体器件。
    • 35. 发明申请
    • Nitride Semiconductor Crystal Manufacturing Apparatus, Nitride Semiconductor Crystal Manufacturing Method, and Nitride Semiconductor Crystal
    • 氮化物半导体晶体制造装置,氮化物半导体晶体制造方法和氮化物半导体晶体
    • US20110171462A1
    • 2011-07-14
    • US13060276
    • 2010-01-20
    • Issei SatohMichimasa MiyanagaYoshiyuki YamamotoHideaki Nakahata
    • Issei SatohMichimasa MiyanagaYoshiyuki YamamotoHideaki Nakahata
    • C01B21/072C23C16/448C23C16/34C30B23/00B32B5/00
    • C30B23/066C30B29/403
    • Affords nitride semiconductor crystal manufacturing apparatuses that are durable and that are for manufacturing nitride semiconductor crystal in which the immixing of impurities from outside the crucible is kept under control, and makes methods for manufacturing such nitride semiconductor crystal, and the nitride semiconductor crystal itself, available.A nitride semiconductor crystal manufacturing apparatus (100) is furnished with a crucible (101), a heating unit (125), and a covering component (110). The crucible (101) is where, interiorly, source material (17) is disposed. The heating unit (125) is disposed about the outer periphery of the crucible (101), where it heats the crucible (101) interior. The covering component (110) is arranged in between the crucible (101) and the heating unit (125). The covering component (110) includes a first layer (111) formed along the side opposing the crucible (101), and made of a metal whose melting point is higher than that of the source material (17), and a second layer (112) formed along the outer periphery of the first layer (111), and made of a carbide of the metal that constitutes the first layer (111).
    • 使氮化物半导体晶体制造装置耐久,并且用于制造氮化物半导体晶体,其中坩埚外部杂质的固定被控制,并且制造这种氮化物半导体晶体的方法和氮化物半导体晶体本身可用 。 氮化物半导体晶体制造装置(100)具有坩埚(101),加热单元(125)和覆盖部件(110)。 坩埚(101)内部设置有源材料(17)。 加热单元(125)围绕坩埚(101)的外周设置,其中坩埚(101)内部加热。 覆盖部件(110)布置在坩埚(101)和加热单元(125)之间。 覆盖部件(110)包括沿与坩埚(101)相对的一侧形成的由熔点高于源材料(17)的金属制成的第一层(111)和第二层(112) )沿着第一层(111)的外周形成,并且由构成第一层(111)的金属的碳化物构成。
    • 36. 发明授权
    • Diamond single crystal substrate
    • 金刚石单晶基板
    • US07955434B2
    • 2011-06-07
    • US11055973
    • 2005-02-14
    • Kiichi MeguroYoshiyuki YamamotoTakahiro Imai
    • Kiichi MeguroYoshiyuki YamamotoTakahiro Imai
    • C30B29/04
    • C30B25/18C30B29/04
    • A diamond single crystal substrate obtained by a vapor-phase growth method, wherein the diamond intrinsic Raman shift of the diamond single crystal substrate surface measured by microscopic Raman spectroscopy with a focused beam spot diameter of excitation light of 2 μm is deviated by +0.5 cm−1 or more to +3.0 cm−1 or less from the standard Raman shift quantity of strain-free diamond, in a region (region A) which is more than 0% to not more than 25% of the surface, and is deviated by −1.0 cm−1 or more to less than +0.5 cm−1 from the standard Raman shift quantity of strain-free diamond, in a region (region B) of the surface other than the region A. The diamond single crystal substrate can be obtained with a large size and high-quality without cracking and is suitable for semiconductor materials, electronic components, and optical components or the like.
    • 通过气相生长法获得的金刚石单晶基板,其中通过微观拉曼光谱测量的金刚石单晶基板表面的金刚石固有拉曼位移具有2μm的激发光的聚焦光束直径偏离+0.5cm 在不大于0%至不超过表面25%的区域(区域A)中,与无应变金刚石的标准拉曼位移量相比,为-1.0以上至+ 3.0cm -1以下,偏离 在区域A以外的表面的区域(区域B)中,与无应变金刚石的标准拉曼位移量相比,为-1.0cm -1以上且小于+ 0.5cm -1。金刚石单晶基板可以 可以获得具有大尺寸和高品质而不破裂,并且适用于半导体材料,电子部件和光学部件等。
    • 38. 发明授权
    • Diamond electron emission cathode, electron emission source, electron microscope, and electron beam exposure device
    • 金刚石电子发射阴极,电子发射源,电子显微镜和电子束曝光装置
    • US07737614B2
    • 2010-06-15
    • US11665459
    • 2006-06-19
    • Akihiko UedaYoshiyuki YamamotoYoshiki NishibayashiTakahiro Imai
    • Akihiko UedaYoshiyuki YamamotoYoshiki NishibayashiTakahiro Imai
    • H01J1/02H01J19/06
    • H01J1/15H01J1/14H01J37/06H01J2237/06308H01J2237/06316
    • An object is to provide an electron emission cathode and an electron emission source using diamond and having a high brightness and a small energy width that are suitable for electron ray and electron beam devices and vacuum tubes, in particular, electron microscopes and electron beam exposure devices, and also electronic devices using such cathode and source. A diamond electron emission cathode according to the present invention has single crystal diamond in at least part thereof, the diamond electron emission cathode having a columnar shape formed by a sharpened acute section and a heating section, being provided with one electron emitting portion in the sharpened acute section, and being constituted of at least two types of semiconductors that differ in electric properties. One of the types constituting the semiconductors is an n-type semiconductor containing n-type impurities at 2×1015 cm3 or higher, the other one is a p-type semiconductor containing p-type impurities at 2×1015 cm−3 or higher, the p-type semiconductor and the n-type semiconductor are joined together, the heating section is energized parallel to the junction surface and directly heated by a pair of current introducing terminals, and some of the introduced electrons are emitted from the electron emitting portion.
    • 目的是提供使用金刚石的电子发射阴极和电子发射源,其具有适用于电子射线和电子束装置和真空管,特别是电子显微镜和电子束曝光装置的高亮度和小的能量宽度 ,以及使用这种阴极和源的电子设备。 根据本发明的金刚石电子发射阴极在其至少一部分中具有单晶金刚石,金刚石电子发射阴极具有由锐化尖锐部分形成的柱状形状和加热部分,在锐化部分中设置有一个电子发射部分 并且由电性能不同的至少两种类型的半导体构成。 构成半导体的种类之一是含有2×1015cm3以上的n型杂质的n型半导体,另一种是含有2×10 15 cm -3以上的p型杂质的p型半导体, p型半导体和n型半导体结合在一起,加热部分被平行于接合面激励并被一对电流引入端直接加热,并且一些引入的电子从电子发射部分发射。
    • 40. 发明申请
    • MICROWAVE PLASMA CVD DEVICE
    • 微波等离子体CVD装置
    • US20090120366A1
    • 2009-05-14
    • US12294212
    • 2007-01-29
    • Akihiko UedaKiichi MeguroYoshiyuki YamamotoYoshiki NishibayashiTakahiro Imai
    • Akihiko UedaKiichi MeguroYoshiyuki YamamotoYoshiki NishibayashiTakahiro Imai
    • C23C16/54
    • C30B25/105C23C16/24C23C16/511C30B29/04H01J37/32192H01J37/32238
    • The present invention provides a microwave plasma CVD device that can satisfactorily perform plasma position control under a condition capable of fabricating a large-area high-quality diamond thin film or the like. A microwave plasma CVD device includes: a vacuum chamber 1 having, in the center of its upper portion, an open portion 2 for introducing microwaves 20; a base material support table 11 for supporting a base material inside the vacuum chamber; a waveguide for guiding the microwaves to the open portion; a dielectric window 22 for introducing the microwaves to the inside of the vacuum chamber; and an antenna portion 25 for introducing the microwaves to the vacuum chamber, the antenna portion being configured by a round rod portion 23 that is positioned in the center of the waveguide, the open portion and the dielectric window and an electrode portion 24 that holds the dielectric window between the electrode portion and the upper portion of the vacuum chamber for vacuum retention, wherein an end surface of the electrode portion 24 is formed wider than the dielectric window such that the dielectric window is hidden, and a concave portion of a predetermined size is formed in the surface of the electrode portion 24 that faces the center of the vacuum chamber.
    • 本发明提供一种能够在能够制造大面积高品质金刚石薄膜等的条件下令人满意地进行等离子体位置控制的微波等离子体CVD装置。 微波等离子体CVD装置包括:真空室1,其上部中心具有用于引入微波20的开口部分2; 用于在真空室内支撑基材的基材支撑台11; 用于将微波引导到开口部分的波导; 用于将微波引导到真空室的内部的电介质窗22; 以及用于将微波引入真空室的天线部分25,天线部分由位于波导中心的圆棒部分23,开口部分和电介质窗口构成,电极部分24保持 电极部分和真空室上部之间的电介质窗口用于真空保持,其中电极部分24的端面形成为比电介质窗口宽,使得电介质窗口被隐藏,并且具有预定尺寸的凹部 形成在电极部分24的面对真空室的中心的表面上。