会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明申请
    • METHOD TO PREVENT THIN SPOT IN LARGE SIZE SYSTEM
    • 在大型系统中防止漏点的方法
    • US20100151688A1
    • 2010-06-17
    • US12634921
    • 2009-12-10
    • Young Jin ChoiGaku FurutaSoo Young ChoiBeom Soo Park
    • Young Jin ChoiGaku FurutaSoo Young ChoiBeom Soo Park
    • H01L21/3065H01L21/302
    • C23C16/4583C23C16/505H01J37/32091H01J37/32733H01L21/68742
    • Embodiments disclosed herein generally include methods of ensuring uniform deposition on a substrate. The smallest gap between a portion of the substrate and the substrate support upon which the substrate rests may lead to uneven deposition of material or ‘thin spots’ on the substrate. Large area substrates, due to their size, are susceptible to numerous gaps at random locations. By inducing an electrostatic charge on the substrate prior to placing the substrate onto the substrate support, the substrate may be placed generally flush against the substrate support. The electrostatic charge on the substrate creates an attraction between the substrate and substrate support to pull substantially the entire surface of the substrate into contact with the substrate support. Material may then be substantially uniformly deposited on the substrate while reducing ‘thin spots’.
    • 本文公开的实施例通常包括确保在基底上均匀沉积的方法。 衬底的一部分和衬底支撑物之间的最小间隙可能导致材料的不均匀沉积或衬底上的“薄点”。 由于其大尺寸,大面积基板在随机位置易受许多间隙的影响。 通过在将衬底放置在衬底支撑件上之前在衬底上引起静电电荷,衬底可以放置在与衬底支撑件相对齐齐的位置。 衬底上的静电电荷在衬底和衬底支撑件之间产生吸引力,以基本上将衬底的整个表面拉到与衬底支撑件接触。 然后可以将材料基本均匀地沉积在衬底上,同时减少“薄点”。
    • 32. 发明申请
    • Deposition repeatability of PECVD films
    • PECVD膜的沉积重复性
    • US20060019031A1
    • 2006-01-26
    • US10898472
    • 2004-07-23
    • Gaku FurutaTae WonJohn White
    • Gaku FurutaTae WonJohn White
    • C23C16/00
    • C23C16/0209C23C16/5096
    • We have a method of improving the deposition rate uniformity of the chemical vapor deposition (CVD) of films when a number of substrates are processed in series, sequentially in a deposition chamber. The method includes the plasma pre-heating of at least one processing volume structure within the processing volume which surrounds the substrate when the substrate is present in the deposition chamber. We also have a device-controlled method which adjusts the deposition time for a few substrates at the beginning of the processing of a number of substrates in series, sequentially in a deposition chamber, so that the deposited film thickness remains essentially constant during processing of the series of substrates. A combination of these methods into a single method provides the best overall results in terms of controlling average film thickness from substrate to substrate.
    • 当在沉积室中顺序地处理多个基板时,我们具有提高膜的化学气相沉积(CVD)的沉积速率均匀性的方法。 该方法包括当衬底存在于沉积室中时,围绕衬底的处理体积内的至少一个处理体积结构的等离子体预热。 我们还有一种装置控制的方法,其可以在沉积室中顺次地串联处理多个基板的开始时调整几个基板的沉积时间,使得沉积膜厚度在处理期间保持基本恒定 系列底物。 将这些方法组合成单一方法提供了从基材到底物控制平均膜厚度方面的最佳总体结果。
    • 36. 发明申请
    • THIN FILM TRANSISTORS HAVING MULTIPLE DOPED SILICON LAYERS
    • 具有多层掺杂硅层的薄膜晶体管
    • US20110269274A1
    • 2011-11-03
    • US12913846
    • 2010-10-28
    • Gaku FurutaSoo Young ChoiOmori Kenji
    • Gaku FurutaSoo Young ChoiOmori Kenji
    • H01L21/336
    • H01L29/66765G02F1/1362H01L29/78618
    • Embodiments of the present invention generally relate to a TFT and a method for its fabrication. The TFT disclosed herein is a silicon based TFT in which the active channel comprises amorphous silicon. Over the amorphous silicon, multiple layers of doped silicon are deposited in which the resistivity of the doped silicon layers is higher at the interface with the amorphous silicon layer as compared to the interface with the source and drain electrodes. Alternatively, a single doped silicon layer is deposited over the amorphous silicon in which the properties of the single doped layer change throughout the thickness. It is better to have a lower resistivity at the interface with the source and drain electrodes, but lower resistivity usually means less substrate throughput. By utilizing multiple or graded layers, low resistivity can be achieved. The embodiments disclosed herein include low resistivity without sacrificing substrate throughput.
    • 本发明的实施例一般涉及TFT及其制造方法。 本文公开的TFT是其中有源沟道包括非晶硅的硅基TFT。 在非晶硅上,沉积了多层掺杂硅,其中掺杂硅层的电阻率在与非晶硅层的界面处比与源极和漏极的界面相比更高。 或者,在非晶硅上沉积单个掺杂的硅层,其中单个掺杂层的性质在整个厚度上变化。 在与源极和漏极的界面处具有较低的电阻率是更好的,但较低的电阻率通常意味着较少的衬底生产量。 通过利用多层或分层,可以实现低电阻率。 本文公开的实施例包括低电阻率而不牺牲基板生产量。
    • 37. 发明授权
    • Differential etch rate control of layers deposited by chemical vapor deposition
    • 通过化学气相沉积沉积的层的差分蚀刻速率控制
    • US07988875B2
    • 2011-08-02
    • US12027964
    • 2008-02-07
    • Soo Young ChoiGaku Furuta
    • Soo Young ChoiGaku Furuta
    • C23F3/00
    • H01L21/31116C03C17/34C03C2218/33C23C16/308C23C16/345C23C16/401H01L21/31111
    • A method and apparatus is provided for controlling the etch profile of a multilayer layer stack by depositing a first and second material layer with differential etch rates in the same or different processing chamber. In one embodiment of the invention, a process for etching substrate material is provided including depositing a first silicon-containing material layer having a first etch rate on the substrate surface from a nitrogen-containing precursor at a first flow rate and a silicon-containing precursor, depositing a second silicon-containing material layer having a second etch rate different than the first etch rate on the first silicon-containing material layer from the nitrogen-containing precursor at a second flow rate different than the first flow rate and the silicon-containing precursor, etching the first silicon-containing material layer and the second silicon-containing material layer, and forming a taper etch profile in the first silicon-containing material layer and the second silicon-containing material layer.
    • 提供了一种方法和装置,用于通过在相同或不同的处理室中沉积差分蚀刻速率的第一和第二材料层来控制多层堆叠的蚀刻轮廓。 在本发明的一个实施例中,提供了一种用于蚀刻衬底材料的方法,包括:以第一流速从含氮前体沉积具有第一蚀刻速率的第一含硅材料层,并在第一流速下沉积含硅前体 在第一含硅材料层上以不同于第一流速的第二流量从含氮前体沉积具有与第一蚀刻速率不同的第二蚀刻速率的第二含硅材料层, 蚀刻第一含硅材料层和第二含硅材料层,并在第一含硅材料层和第二含硅材料层中形成锥形蚀刻轮廓。
    • 38. 发明授权
    • Thin film transistors having multiple doped silicon layers
    • 具有多个掺杂硅层的薄膜晶体管
    • US08299466B2
    • 2012-10-30
    • US12913846
    • 2010-10-28
    • Gaku FurutaSoo Young ChoiOmori Kenji
    • Gaku FurutaSoo Young ChoiOmori Kenji
    • H01L31/00
    • H01L29/66765G02F1/1362H01L29/78618
    • Embodiments of the present invention generally relate to a TFT and a method for its fabrication. The TFT disclosed herein is a silicon based TFT in which the active channel comprises amorphous silicon. Over the amorphous silicon, multiple layers of doped silicon are deposited in which the resistivity of the doped silicon layers is higher at the interface with the amorphous silicon layer as compared to the interface with the source and drain electrodes. Alternatively, a single doped silicon layer is deposited over the amorphous silicon in which the properties of the single doped layer change throughout the thickness. It is better to have a lower resistivity at the interface with the source and drain electrodes, but lower resistivity usually means less substrate throughput. By utilizing multiple or graded layers, low resistivity can be achieved. The embodiments disclosed herein include low resistivity without sacrificing substrate throughput.
    • 本发明的实施例一般涉及TFT及其制造方法。 本文公开的TFT是其中有源沟道包括非晶硅的硅基TFT。 在非晶硅上,沉积了多层掺杂的硅,其中掺杂硅层的电阻率在与非晶硅层的界面处比与源极和漏极的界面相比更高。 或者,在非晶硅上沉积单个掺杂的硅层,其中单个掺杂层的性质在整个厚度上变化。 在与源极和漏极的界面处具有较低的电阻率是更好的,但较低的电阻率通常意味着较少的衬底生产量。 通过利用多层或分层,可以实现低电阻率。 本文公开的实施例包括低电阻率而不牺牲基板生产量。