会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明申请
    • Polarization reversal structure constructing method and optical device having polarization reversal structure
    • 具有偏振反转结构的偏振反转结构构造方法和光学器件
    • US20060051025A1
    • 2006-03-09
    • US10535975
    • 2003-11-21
    • Kiminori MizuuchiAkihiro MorikawaTomoya Sugita
    • Kiminori MizuuchiAkihiro MorikawaTomoya Sugita
    • G02B6/26
    • G02F1/3558
    • A method for forming a domain-inverted structure includes the following: using a ferroelectric substrate (1) having a principal surface substantially perpendicular to the Z axis of crystals; providing a first electrode (3) on the principal surface of the ferroelectric substrate, the first electrode having a pattern of a plurality of electrode fingers (5) that are arranged periodically; providing a counter electrode (6) on the other side of the ferroelectric substrate so as to be opposite from the first electrode; and applying an electric field to the ferroelectric substrate with the first electrode and the counter electrode, thereby forming domain-inverted regions corresponding to the pattern of the first electrode in the ferroelectric substrate. Each of the electrode fingers of the first electrode is located so that a direction from a base to a tip (5a) of the electrode finger is aligned with the Y-axis direction of the crystals of the ferroelectric substrate. This method can provide a short-period uniform domain-inverted structure.
    • 用于形成畴反转结构的方法包括:使用具有基本上垂直于晶体的Z轴的主表面的铁电体基板(1) 在所述强电介质基板的主表面上设置第一电极,所述第一电极具有周期性排列的多个电极指(5)的图案; 在所述铁电体基板的另一侧设置与所述第一电极相对的对置电极(6); 并且利用第一电​​极和对电极向铁电体基板施加电场,从而形成与铁电体基板中的第一电极的图案对应的畴反转区域。 第一电极的每个电极指的位置使得从电极指的基部到尖端(5a)的方向与铁电体的晶体的Y轴方向一致。 该方法可以提供短周期均匀域倒置结构。
    • 32. 发明授权
    • Laser wavelength conversion device, method for forming polarization reversed structure, and image display device
    • 激光波长转换装置,形成极化反转结构的方法和图像显示装置
    • US07869120B2
    • 2011-01-11
    • US12121451
    • 2008-05-15
    • Koichi KusukameKiminori MizuuchiTomoya SugitaAkihiro Morikawa
    • Koichi KusukameKiminori MizuuchiTomoya SugitaAkihiro Morikawa
    • G02F1/35G02F2/02H01S3/10
    • G02F1/3558G02F1/3525G02F1/3775
    • An object of the invention is to increase the beam diameter of a laser beam, and perform high-output wavelength conversion without causing crystal damage. A laser wavelength conversion device includes a laser wavelength conversion element for allowing incidence of a laser beam as a fundamental wave to convert a part of the fundamental wave laser beam into a wavelength-converted laser beam having a wavelength different from a wavelength of the fundamental wave laser beam. The laser wavelength conversion element includes a non-linear optical crystal having periodically polarization reversed portions. The polarization reversed portions are formed in such a manner that a region where a wavelength conversion efficiency is substantially uniform extends in a polarization direction of the non-linear optical crystal. The incident laser beam is converted into the wavelength-converted laser beam with the wavelength conversion efficiency.
    • 本发明的一个目的是增加激光束的光束直径,并且在不引起晶体损坏的情况下进行高输出波长转换。 激光波长转换装置包括激光波长转换元件,用于允许激光束作为基波的入射,以将基波激光束的一部分转换成波长不同于基波波长的波长转换激光束 激光束。 激光波长转换元件包括具有周期性极化反转部分的非线性光学晶体。 偏振反转部分以这样的方式形成,使得波长转换效率基本均匀的区域在非线性光学晶体的偏振方向上延伸。 入射激光束以波长转换效率转换为波长转换激光束。
    • 33. 发明授权
    • Surface-emitting laser and laser projector
    • 表面发射激光和激光投影机
    • US07643524B2
    • 2010-01-05
    • US10584077
    • 2004-12-21
    • Kiminori MizuuchiKen'ichi KasazumiAkihiro Morikawa
    • Kiminori MizuuchiKen'ichi KasazumiAkihiro Morikawa
    • H01S3/00
    • H01S5/18386H01S3/109H01S5/0421H01S5/0425H01S5/0655H01S5/14H01S5/18391H01S5/2086H01S5/4062H01S5/423H01S2301/166
    • A surface emitting laser includes an active layer disposed on a semiconductor substrate, and a pair of upper and lower electrodes for injecting carriers into the active layer. The plane surface of the lower electrode is shaped into a star so that injection of current into the active layer from the lower electrode is carried out with a high density at the center of the lower electrode and with a low density at its periphery part. In the surface emitting laser, the density distribution of the carriers injected into the active layer corresponds to the power distribution of light inside the active layer. Thereby, hole burning due to an increase in the current density in the region of the active layer corresponding to the peripheral part of the electrode is avoided, and the transverse mode stability during high output operation is significantly enhanced to improve high-output characteristic.
    • 表面发射激光器包括设置在半导体衬底上的有源层和用于将载流子注入有源层的一对上下电极。 下电极的平面被成形为星形,使得从下电极注入有源层的电流在下电极的中心处以高密度注入并在其周边部分以低密度进行。 在表面发射激光器中,注入有源层的载流子的密度分布对应于有源层内的光的功率分布。 因此,避免了由于与电极的周边部分相对应的有源层的区域中的电流密度的增加而导致的空穴燃烧,并且显着增强了高输出操作期间的横向模式稳定性,从而提高了高输出特性。
    • 38. 发明授权
    • Method for forming domain-inverted structure and optical element with domain-inverted structure
    • 用于形成域反转结构的方法和具有域倒置结构的光学元件
    • US07230753B2
    • 2007-06-12
    • US10535975
    • 2003-11-21
    • Kiminori MizuuchiAkihiro MorikawaTomoya Sugita
    • Kiminori MizuuchiAkihiro MorikawaTomoya Sugita
    • G02F1/00G02F2/02
    • G02F1/3558
    • A method for forming a domain-inverted structure includes the following: using a ferroelectric substrate (1) having a principal surface substantially perpendicular to the Z axis of crystals; providing a first electrode (3) on the principal surface of the ferroelectric substrate, the first electrode having a pattern of a plurality of electrode fingers (5) that are arranged periodically; providing a counter electrode (6) on the other side of the ferroelectric substrate so as to be opposite from the first electrode; and applying an electric field to the ferroelectric substrate with the first electrode and the counter electrode, thereby forming domain-inverted regions corresponding to the pattern of the first electrode in the ferroelectric substrate. Each of the electrode fingers of the first electrode is located so that a direction from a base to a tip (5a) of the electrode finger is aligned with the Y-axis direction of the crystals of the ferroelectric substrate. This method can provide a short-period uniform domain-inverted structure.
    • 用于形成畴反转结构的方法包括:使用具有基本上垂直于晶体的Z轴的主表面的铁电体基板(1) 在所述强电介质基板的主表面上设置第一电极,所述第一电极具有周期性排列的多个电极指(5)的图案; 在所述铁电体基板的另一侧设置与所述第一电极相对的对置电极(6); 并且利用第一电​​极和对电极向铁电体基板施加电场,从而形成与铁电体基板中的第一电极的图案对应的畴反转区域。 第一电极的每个电极指的位置使得从电极指的基部到尖端(5a)的方向与铁电体的晶体的Y轴方向一致。 该方法可以提供短周期均匀域倒置结构。
    • 40. 发明授权
    • Laser module and method for manufacturing the same
    • 激光模块及其制造方法
    • US07494286B2
    • 2009-02-24
    • US10534438
    • 2003-11-12
    • Akihiro MorikawaToshifumi YokoyamaYasuo KitaokaKazuhisa Yamamoto
    • Akihiro MorikawaToshifumi YokoyamaYasuo KitaokaKazuhisa Yamamoto
    • G02B6/36G02B6/12
    • G02B6/42G02B6/4239G02F1/3775H01S5/0092H01S5/02208H01S5/02252
    • Efficient coupling structures are important for the realization of reliable and economical integrated optical circuit applications. This paper presents a new approach for the simulation of an anisotropic plasma etching process in silicon based on a string point model as well as the realization and the results of etching processes in silicon, silicon dioxide, silicon oxinitride and silicon nitride which are fundamental for the fabrication of coupling structures. The connections to active and passive components were fabricated using plasma etching and deposition processes which are compatible with C-MOS or BIC-MOS technology. The realized waveguide-detector structures with vertical and horizontal silicon PIN-diodes exhibit efficiencies close to 90% for wavelength below 1.1 micrometers. The diodes can detect signals of modulation frequencies of more than 400 MHz due to horizontal light injection and capacitances less than 1 pF. Fiber-detector coupling structures with U-grooves for the fiber alignment containing such detectors show similar results. The necessary accuracy of the etched depth of the U-grooves for fiber-detector coupling is +/−2 micrometers in contrast to a fiber-waveguide coupling which requires a reproducible accuracy of the process better than 0.5 micrometers. A reduction of coupling losses due to the necessary close tolerances is accomplished by waveguide tapers. The simulation, realization and results for such structures are presented in the paper. Also laser diode—fiber connections require extremely close tolerances. The design of a micro-optical bench realized by plasma etching and a selfaligning soldering process is presented, which allows such tolerances.
    • 高效的耦合结构对于实现可靠且经济的集成光电路应用很重要。 本文提出了一种基于串点模型模拟硅中各向异性等离子体蚀刻工艺的新方法,以及硅,二氧化硅,氮氧化硅和氮化硅中蚀刻过程的实现和结果,这些都是基于 耦合结构的制造。 使用与C-MOS或BIC-MOS技术兼容的等离子体蚀刻和沉积工艺制造与主动和无源部件的连接。 实现的具有垂直和水平硅PIN二极管的波导检测器结构对于低于1.1微米的波长表现出接近90%的效率。 由于水平光注入和小于1 pF的电容,二极管可以检测超过400 MHz的调制频率信号。 具有用于包含这种检测器的光纤对准的U形槽的光纤检测器耦合结构显示相似的结果。 与光纤 - 波导耦合相比,用于光纤 - 检测器耦合的U形槽的蚀刻深度所需的精度为+/- 2微米,这需要该工艺的可重复精度优于0.5微米。 由于必要的紧公差导致的耦合损耗的减小是通过波导锥度实现的。 本文提出了这种结构的仿真,实现和结果。 激光二极管 - 光纤连接也需要极其公差。 提出了通过等离子体蚀刻和自对准焊接工艺实现的微光学台架的设计,其允许这种公差。