会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明申请
    • METHOD FOR FABRICATING NARROW MAGNETIC READ WIDTH TMR/CPP SENSORS
    • 用于制造NARROW MAGNETIC READ WIDTH TMR / CPP SENSORS的方法
    • US20100024201A1
    • 2010-02-04
    • US12184054
    • 2008-07-31
    • Quang LeJui-Lung Li
    • Quang LeJui-Lung Li
    • H04R31/00
    • G11B5/3909B82Y10/00B82Y25/00G01R33/093G01R33/098G11B5/3163G11B5/3932G11B2005/3996Y10T29/49043Y10T29/49044Y10T29/49046Y10T29/49048Y10T29/49052
    • A method for manufacturing a manufacturing a magnetoresistive sensor that allows the sensor to be constructed with a very narrow and well controlled track width. The method includes depositing a layer of diamond like carbon over a series of sensor layers. A first mask is then formed to define a sensor, and an ion milling is performed to remove sensor material not protected by the first mask. Then, a second mask is formed, and a hard bias layer is deposited to the thickness of the sensor layers. The second mask is then lifted off and a CMP is performed to remove the first mask structure. Because the all areas other than the area directly over the sensor are substantially planar (due to the removal of the second mask and the low level of the hard bias material) a quick, gentle CMP can be used to remove the first mask layer even if the first mask is small, such as for definition of a very narrow track-width sensor.
    • 一种用于制造磁阻传感器的方法,该传感器允许传感器被构造成具有非常窄且良好控制的轨道宽度。 该方法包括在一系列传感器层上沉积一层类似金刚石的碳。 然后形成第一掩模以限定传感器,并且执行离子铣削以去除未被第一掩模保护的传感器材料。 然后,形成第二掩模,并且在传感器层的厚度上沉积硬偏置层。 然后将第二掩模剥离并执行CMP以除去第一掩模结构。 由于直接在传感器上方的区域以外的所有区域基本上是平面的(由于第二掩模的移除和硬偏置材料的低水平),可以使用快速柔和的CMP来去除第一掩模层,即使 第一个掩模很小,例如用于定义非常窄的轨道宽度传感器。
    • 34. 发明申请
    • Three terminal magnetic sensing devices having base lead layers in-plane with collector substrate materials and methods of making the same
    • 具有与集电体基板材料在一起的基极引线层的三端子磁感测装置及其制造方法
    • US20070238198A1
    • 2007-10-11
    • US11239178
    • 2005-09-29
    • Robert FontanaJui-Lung LiJeffrey LilleSergio Nicoletti
    • Robert FontanaJui-Lung LiJeffrey LilleSergio Nicoletti
    • H01L21/00
    • G11B5/398B82Y10/00B82Y25/00G01R33/093G11B5/3903H01L29/66984
    • Three terminal magnetic sensing devices (TTMs) having base lead layers in-plane with collector substrate materials, and methods of making the same, are disclosed. In one illustrative example, a collector substrate having an elevated region and a recessed region adjacent the elevated region is provided. An insulator layer is formed in full-film over the collector substrate, and a base lead layer is formed in full-film over the insulator layer and in-plane with semiconductor materials of the elevated region. The insulator materials and the base lead materials that are formed over the elevated region are removed. A sensor stack structure having an emitter region and a base region is then formed over the elevated region such that part of the base region is formed over an end of the base lead layer. A base conductive via may be formed to contact base lead materials of the base lead layer at a suitable distance away from the sensor stack structure. Advantageously, the base conductive via formation may occur without causing damage to the sensor stack structure. Also, the base lead layer is formed in the recessed region of the collector substrate prior to the formation of the sensor stack structure such that the TTM may be entirely in-situ manufactured. Furthermore, the trackwidth of the TTM may be defined directly by the elevated region of the collector substrate. The TTM is suitable for incorporation into nanoscale devices which increase areal recording densities, therefore aiding the revolution in magnetic storage.
    • 公开了具有与集电器基板材料在一起的基极引线层的三端子磁感测装置(TTM)及其制造方法。 在一个说明性示例中,提供了具有升高区域和与升高区域相邻的凹陷区域的收集器基板。 在集电体基板上形成绝缘体层,并且在绝缘体层上形成基极引线层,并且与升高区域的半导体材料在同一平面内形成基极引线层。 去除在升高区域上形成的绝缘体材料和基底引线材料。 然后在升高的区域上形成具有发射极区域和基极区域的传感器堆叠结构,使得基极区域的一部分形成在基极引线层的一端上。 可以形成基底导电通孔,以在离传感器堆叠结构适当的距离处接触基底引线层的基底引线材料。 有利地,可以在不会对传感器堆叠结构造成损害的情况下发生基底导电通孔形成。 此外,在形成传感器堆叠结构之前,基极引线层形成在集电体基板的凹陷区域中,使得TTM可以完全原位制造。 此外,TTM的轨道宽度可以由收集器基板的升高区域直接定义。 TTM适合纳入纳米级器件,增加面积记录密度,从而有助于磁存储的革命。