会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明申请
    • Scalable, component-accessible, and highly interconnected three-dimensional component arrangement within a system
    • 系统内可扩展的,可组件访问的和高度互连的三维组件布置
    • US20060053397A1
    • 2006-03-09
    • US10935845
    • 2004-09-08
    • Philip KuekesR. WilliamsRaymond Beausoleil
    • Philip KuekesR. WilliamsRaymond Beausoleil
    • G06F17/50
    • G06F1/18G06F17/509H05K7/1444
    • Embodiments of the present invention include dense, but accessible and well-interconnected component arrangements within multi-component systems, such as high-end multi-processor computer systems, and methods for constructing such arrangements. In a described embodiment, integrated-circuit-containing processing components, referred to as a “flat components,” are arranged into local blocks of intercommunicating flat components. The local flat-component blocks are arranged into interconnected, primitive multi-local-block repeating units, and the primitive local-block repeating units are layered together in a three-dimensional, regularly repeating structure that can be assembled to approximately fill any specified three-dimensional volume. The arrangement provides for relatively short, direct pathways from the surface of the specified volume to any particular local block and flat component within the three-dimensional arrangement.
    • 本发明的实施例包括在诸如高端多处理器计算机系统的多组件系统内的密集但可访问和良好互连的组件布置,以及用于构造这种布置的方法。 在所描述的实施例中,被称为“平面部件”的集成电路的处理部件被布置在相互连通的平面部件的局部块中。 本地平面组件块被布置成互连的原始多局部块重复单元,并且原始局部块重复单元以三维的规则重复的结构分层在一起,其可以被组装以大致填充任何指定的三 维数。 该装置提供从指定体积的表面到三维布置中的任何特定局部块和平坦部件的相对短的直接通路。
    • 32. 发明申请
    • Tagging systems
    • 标记系统
    • US20060022832A1
    • 2006-02-02
    • US10903220
    • 2004-07-30
    • Adrian KentWilliam MunroTimothy SpillerRaymond Beausoleil
    • Adrian KentWilliam MunroTimothy SpillerRaymond Beausoleil
    • G08B13/14
    • G08B21/0272G08B13/2462G08B21/0275G08B21/22
    • A method of verifying the position of a tagging device is described. The method comprises: storing response information in a quantum state of a quantum entity, the quantum entity comprising an entangled pair; separating the entangled pair into first and second entangled particles; conveying the first and second entangled particles to first and second emitters respectively; emitting the first and second particles of the entangled pair respectively from the first and second emitters to the tagging device; recombining the first and second entangled particles in the tagging device to determine the response information; transmitting a signal from the tagging device to at least one of a plurality of detectors; recording the arrival time of the signal at the or each receiving detector, the or each receiving detector being selected on the basis of the determined response information; and comparing the or each receiving detector and the arrival time of the signal at the or each receiving detector with at least one expected receiving detector and an expected arrival time of the signal for the or each expected receiving detector. Matching the expected and actual signal arrival time for an expected detector verifies the position of the tagging device.
    • 描述了一种验证标记设备的位置的方法。 该方法包括:将响应信息存储在量子实体的量子状态中,量子实体包括纠缠对; 将缠结对分离成第一和第二缠结颗粒; 将第一和第二缠结颗粒分别输送到第一和第二发射器; 将所述缠结对的第一和第二颗粒分别从所述第一和第二发射体发射到所述标签装置; 将标记装置中的第一和第二纠缠粒子重组以确定响应信息; 将信号从所述标记装置发送到多个检测器中的至少一个; 在所述或每个接收检测器处记录所述信号的到达时间,所述或每个接收检测器基于所确定的响应信息进行选择; 以及将每个接收检测器或每个接收检测器的信号的到达时间与至少一个期望的接收检测器和用于该或每个预期接收检测器的信号的预期到达时间进行比较。 匹配预期检测器的预期和实际信号到达时间验证标记设备的位置。
    • 36. 发明申请
    • Raman signal-enhancing structures and devices
    • 拉曼信号增强结构和器件
    • US20070252982A1
    • 2007-11-01
    • US11413910
    • 2006-04-28
    • Shih-Yuan WangR. WilliamsRaymond BeausoleilTheodore KaminsZhiyong LiWei Wu
    • Shih-Yuan WangR. WilliamsRaymond BeausoleilTheodore KaminsZhiyong LiWei Wu
    • G01J3/44G01N21/65
    • G01N21/658G01J3/44
    • Raman systems include a radiation source, a radiation detector, and a Raman device or signal-enhancing structure. Raman devices include a tunable resonant cavity and a Raman signal-enhancing structure coupled to the cavity. The cavity includes a first reflective member, a second reflective member, and an electro-optic material disposed between the reflective members. The electro-optic material exhibits a refractive index that varies in response to an applied electrical field. Raman signal-enhancing structures include a substantially planar layer of Raman signal-enhancing material having a major surface, a support structure extending from the major surface, and a substantially planar member comprising a Raman signal-enhancing material disposed on an end of the support structure opposite the layer of Raman signal-enhancing material. The support structure separates at least a portion of the planar member from the layer of Raman signal-enhancing material by a selected distance of less than about fifty nanometers.
    • 拉曼系统包括辐射源,辐射检测器和拉曼器件或信号增强结构。 拉曼器件包括耦合到空腔的可调谐谐振腔和拉曼信号增强结构。 空腔包括第一反射构件,第二反射构件和设置在反射构件之间的电光材料。 电光材料表现出响应于所施加的电场而变化的折射率。 拉曼信号增强结构包括具有主表面的基本平坦的拉曼信号增强材料层,从主表面延伸的支撑结构和包括设置在支撑结构的端部上的拉曼信号增强材料的基本上平面的构件 与拉曼信号增强材料层相对。 支撑结构将平面构件的至少一部分与拉曼信号增强材料层分开小于约五十纳米的选定距离。
    • 37. 发明申请
    • Methods for determining relative phase differences in entangled quantum states
    • 确定纠缠量子态相对相位差的方法
    • US20070250280A1
    • 2007-10-25
    • US11407600
    • 2006-04-19
    • Raymond BeausoleilWilliam MunroTimothy SpillerPieter KokSean BarrettKae Nemoto
    • Raymond BeausoleilWilliam MunroTimothy SpillerPieter KokSean BarrettKae Nemoto
    • G06F19/00
    • B82Y10/00G06N99/002
    • Various embodiments of the present invention are directed to methods for determining a phase shift acquired by an entangled N-qubit system represented by a NOON state. In one embodiment, a probe electromagnetic field is coupled with each qubit system. The phase shift acquired by the qubit systems is transferred to the probe electromagnetic field by transforming each qubit-system state into a linear superposition of qubit basis states. An intensity measurement is performed on the probe electromagnetic field in order to obtain a corresponding measurement result. A counter associated with a measurement-result interval is incremented, based on the measurement result falling within the measurement-result interval. A frequency distribution is produced by normalizing the counter associated with each measurement-result interval for a number of trials. The phase shift is determined by fitting a probability distribution associated with the probe electromagnetic field to the frequency distribution as a function of the phase shift.
    • 本发明的各种实施例涉及用于确定由NOON状态表示的纠缠的N量子比特系统获取的相移的方法。 在一个实施例中,探测电磁场与每个量子位系统耦合。 通过将每个量子位系统状态转换为量子位基状态的线性叠加,由量子位系统获取的相移被传送到探测电磁场。 对探头电磁场进行强度测量,以获得相应的测量结果。 基于测量结果间隔内的测量结果,与测量结果间隔相关联的计数器增加。 通过对与多个试验的每个测量结果间隔相关联的计数器进行归一化来产生频率分布。 通过将与探测电磁场相关联的概率分布拟合为频率分布来确定相移作为相移的函数。
    • 38. 发明申请
    • Compute clusters employing photonic interconnections for transmitting optical signals between compute cluster nodes
    • 使用光子互连计算集群,用于在计算集群节点之间传输光信号
    • US20070172235A1
    • 2007-07-26
    • US11337328
    • 2006-01-23
    • Gregory SniderRaymond Beausoleil
    • Gregory SniderRaymond Beausoleil
    • H04J14/00
    • H04Q11/0001B82Y10/00B82Y20/00G02B6/1225G02B6/43G06N99/002H04B10/801H04L49/101H04L49/254H04L49/3045H04L49/357
    • Various embodiments of the present invention are directed to photonic-interconnection-based compute clusters that provide high-speed, high-bandwidth interconnections between compute cluster nodes. In one embodiment of the present invention, the compute cluster includes a photonic interconnection having one or more optical transmission paths for transmitting independent frequency channels within an optical signal to each node in a set of nodes. The compute cluster includes one or more photonic-interconnection-based writers, each writer associated with a particular node, and each writer encoding information generated by the node into one of the independent frequency channels. A switch fabric directs the information encoded in the independent frequency channels to one or more nodes in the compute cluster. The compute cluster also includes one or more photonic-interconnection-based readers, each reader associated with a particular node, and each reader extracting the information encoded in the independent frequency channels directed to the node for processing.
    • 本发明的各种实施例涉及在计算集群节点之间提供高速,高带宽互连的基于光子互连的计算集群。 在本发明的一个实施例中,计算集群包括具有一个或多个光传输路径的光子互连,用于将光信号内的独立频率信道传送到一组节点中的每个节点。 计算集群包括一个或多个基于光子互连的写入器,每个写入器与特定节点相关联,并且每个写入器将由节点生成的信息编码为独立频率信道之一。 交换结构将在独立频率信道中编码的信息定向到计算集群中的一个或多个节点。 计算集群还包括一个或多个基于光子互连的读取器,每个读取器与特定节点相关联,并且每个读取器提取在指向节点的独立频率信道中编码的信息进行处理。