会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Method for electrochemically structuring a conductive or semiconductor material, and device for implementing it
    • 用于电化学构造导电或半导体材料的方法,以及用于实现它的装置
    • US08329017B2
    • 2012-12-11
    • US12281595
    • 2007-02-06
    • Denis Buttard
    • Denis Buttard
    • C25D5/02C25D17/00
    • B81C1/00126B81C2201/0114C25D1/00C25D1/006C25D5/02C25D5/16C25D7/12C25D17/005C25F3/14H01L21/02203H01L21/02238H01L21/02258H01L21/306H01L21/3063H01L21/31675
    • The invention relates to a method and to a device for electrochemical micro- and/or nano-structuring, which are reliable, fast, simple, easy to implement, and reproducible. For this purpose, the invention provides a method of electrochemically structuring a sample (12) of conductive or semiconductor material that has opposite front and rear faces (11 and 13). The method comprises the steps consisting: in putting at least the front face (11) of the sample (12) into contact with at least one electrolytic solution (4) stored in at least one tank (3); in placing at least one counter-electrode (6) in an electrolyte (4) in register with the front face (11) of the sample (12), said front face (11) being for structuring; in placing at least one working electrode (7) presenting structuring patterns (14) into dry ohmic contact with the rear face (13) of the sample (12); and in applying an electric current between at least one counter-electrode (6) and at one least working electrode (7) that are substantially in register with each other in order to obtain an electrochemical reaction at the interface between the front face (11) of the sample (12) and the electrolyte (4) with current density that is modulated by the structuring patterns (14) of the working electrode (7) in order to perform etching and/or deposition on the front face (11) of the sample (12).
    • 本发明涉及电化学微观和/或纳米结构的方法和装置,它们是可靠的,快速的,简单的,易于实现的和可重复的。 为此,本发明提供了一种电化学构造具有相对的前表面和后表面(11和13)的导电或半导体材料的样品(12)的方法。 该方法包括以下步骤:至少将样品(12)的前表面(11)与至少一个储存在至少一个罐(3)中的电解液(4)接触; 在将至少一个对电极(6)放置在与样品(12)的前表面(11)对准的电解质(4)中,所述前表面(11)用于结构化; 在将至少一个工作电极(7)放置成与所述样品(12)的后表面(13)干法欧姆接触的结构图案(14)中; 并且在基本上彼此对准的至少一个对电极(6)和至少一个至少工作电极(7)之间施加电流,以便在所述前表面(11)之间的界面处获得电化学反应, 的样品(12)和电解质(4),其电流密度由工作电极(7)的结构图案(14)调制,以便在所述工作电极(7)的正面(11)上进行蚀刻和/或沉积 样品(12)。
    • 22. 发明申请
    • ANISOTROPICALLY CONDUCTIVE MEMBER
    • 各向异性会员
    • US20120073973A1
    • 2012-03-29
    • US13240094
    • 2011-09-22
    • Kosuke YAMASHITAYoshinori HOTTAAkio UESUGI
    • Kosuke YAMASHITAYoshinori HOTTAAkio UESUGI
    • C25D1/20C25D1/00B32B3/00B32B3/26B32B5/00
    • H01R43/007C25D1/006C25D3/12C25D3/38C25D11/04C25D11/045C25D11/08C25D11/12C25D11/20C25D11/24H01R13/2414
    • An anisotropically conductive member includes an insulating base having through micropores and conductive paths formed by filling the through micropores with a conductive material, insulated from one another, and extending through the insulating base in its thickness direction, one end of each of the conductive paths exposed on one side of the insulating base, the other end of each of the conductive paths exposed on the other side thereof. The insulating base is an anodized film obtained from an aluminum substrate and the aluminum substrate contains intermetallic compounds with an average circle equivalent diameter of up to 2 μm at a density of up to 100 pcs/mm2. The anisotropically conductive member dramatically increases the density of disposed conductive paths and suppresses the formation of regions having no conductive paths, and can be used as an electrically connecting member or inspection connector for electronic components.
    • 各向异性导电构件包括具有通过微孔的绝缘基底和通过用导电材料填充通孔而形成的导电路径,导电材料彼此绝缘并且在其厚度方向上延伸穿过绝缘基底,每个导电路径的一端暴露 在绝缘基底的一侧,每个导电路径的另一端在另一侧露出。 绝缘基材是由铝基板获得的阳极氧化膜,铝基板以高达100个/ mm 2的密度含有平均当量直径高达2μm的金属间化合物。 各向异性导电构件显着地增加了布置的导电路径的密度,并且抑制了没有导电路径的区域的形成,并且可以用作用于电子部件的电连接构件或检查连接器。
    • 28. 发明申请
    • TITANIUM DIOXIDE NANOTUBES AND THEIR USE IN PHOTOVOLTAIC DEVICES
    • 二氧化钛纳米粒子及其在光电器件中的应用
    • US20100269894A1
    • 2010-10-28
    • US12768667
    • 2010-04-27
    • Manoranjan MisraSusanta Kumar MohapatraSubarna Banerjee
    • Manoranjan MisraSusanta Kumar MohapatraSubarna Banerjee
    • H01L31/02C25D1/00
    • C25D11/26B82Y20/00B82Y30/00C25D1/006C25D1/02C25D11/045H01G9/2031H01G9/2059Y02E10/542
    • A titanium substrate is anodized to form an array of titanium dioxide nanotubes on the substrate surface. The nanotubes have hexagonal pore structures, are hexagonal in nature along their length and are tightly packed. The electrolyte solution used in the anodization process comprises the complexing agent Na2[H2EDTA]. The titanium dioxide nanotubes are formed at a rate of about 40 μm/hr. A titanium dioxide nanotube array detaches from the underlying titanium dioxide substrate by allowing the array to stand at room temperature, or by applying heat to the array. The resulting titanium dioxide membrane has a barrier layer on the back side of the membrane, which closes one end of the constituent nanotubes. The barrier layer can be removed via a chemical etch to create a membrane comprising nanotubes with open ends. The titanium dioxide membrane can be filled with a photosensitive dye and used as part of a dye sensitive photovoltaic devices.
    • 钛基板被阳极化以在基板表面上形成二氧化钛纳米管阵列。 纳米管具有六方孔结构,沿其长度本质上是六边形,并且紧密包装。 在阳极氧化工艺中使用的电解质溶液包括络合剂Na2 [H2EDTA]。 二氧化钛纳米管以约40μm/小时的速度形成。 二氧化钛纳米管阵列通过允许阵列在室温下放置,或通过向阵列施加热而与下面的二氧化钛基底分离。 所得到的二氧化钛膜在膜的背面具有阻挡层,其封闭组成纳米管的一端。 阻挡层可以通过化学蚀刻去除以产生包含开口端的纳米管的膜。 二氧化钛膜可以填充感光染料,并用作染料敏感光伏器件的一部分。
    • 29. 发明申请
    • LITHIUM-ION BATTERY
    • 锂离子电池
    • US20090214956A1
    • 2009-08-27
    • US12391197
    • 2009-02-23
    • Amy L. PrietoJames M. MosbyTimothy S. Arthur
    • Amy L. PrietoJames M. MosbyTimothy S. Arthur
    • H01M6/18H01M4/02H01M4/58H01M4/00H01M6/02
    • H01M4/0452C25D1/006C25D3/58C25D5/18C25D9/04C25D9/08H01M4/04H01M4/0404H01M4/131H01M4/134H01M10/052H01M2004/021H01M2004/024H01M2004/025Y02E60/122Y10S977/762Y10T29/49115
    • A lithium-ion battery having an anode including an array of nanowires electrochemically coated with a polymer electrolyte, and surrounded by a cathode matrix, forming thereby interpenetrating electrodes, wherein the diffusion length of the Li+ ions is significantly decreased, leading to faster charging/discharging, greater reversibility, and longer battery lifetime, is described. The battery design is applicable to a variety of battery materials. Methods for directly electrodepositing Cu2Sb from aqueous solutions at room temperature using citric acid as a complexing agent to form an array of nanowires for the anode, are also described. Conformal coating of poly-[Zn(4-vinyl-4′methyl-2,2′-bipyridine)3](PF6)2 by electroreductive polymerization onto films and high-aspect ratio nanowire arrays for a solid-state electrolyte is also described, as is reductive electropolymerization of a variety of vinyl monomers, such as those containing the acrylate functional group. Such materials display limited electronic conductivity but significant lithium ion conductivity. Cathode materials may include oxides, such as lithium cobalt oxide, lithium magnesium oxide, or lithium tin oxide, as examples, or phosphates, such as LiFePO4, as an example.
    • 一种具有阳极的锂离子电池,其具有电化学涂覆有聚合物电解质的纳米线阵列,并被阴极基体包围,从而形成互穿电极,其中Li +离子的扩散长度显着降低,导致更快的充电/放电 ,更大的可逆性和更长的电池寿命。 电池设计适用于各种电池材料。 还描述了使用柠檬酸作为络合剂在室温下从水溶液中直接电沉积Cu2Sb的方法,以形成阳极纳米线阵列。 还描述了通过电还原聚合在固体电解质的膜和高纵横比纳米线阵列上的聚 - [Zn(4-乙烯基-4'-甲基-2,2'-联吡啶)3](PF 6)2的共形涂层 ,如各种乙烯基单体的还原电聚合,例如含有丙烯酸酯官能团的乙烯基单体。 这种材料显示出有限的电子导电性,但显着的锂离子传导性。 作为实例,阴极材料可以包括氧化物,例如钴酸锂,锂氧化镁或氧化锡锂,或磷酸盐,例如LiFePO 4。