会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 26. 发明申请
    • METHOD FOR PRODUCING A BI-MATERIAL SLIDING BEARING
    • 用于生产双材料滑动轴承的方法
    • US20170009811A1
    • 2017-01-12
    • US15115372
    • 2015-01-28
    • MIBA GLEITLAGER AUSTRIA GMBH
    • Walter GAERTNER
    • F16C33/14C23C14/32F16C33/12
    • F16C33/14C23C14/16C23C14/30C23C14/32F16C33/125F16C2202/04F16C2220/20F16C2223/30F16C2223/60F16C2240/60
    • The invention relates to a method for producing a bi-material sliding bearing (1) whereby a metal sliding layer (3) of at least two different particle types is deposited under reduced pressure from the gas phase on a flat, metal substrate (8), and a first particle type forms a matrix with first grains and the second particle type forms grains embedded in the matrix of the metal sliding layer (3), and the metal sliding layer (3) is produced with a thickness (4) of more than 250 μm and with a Vickers hardness below 100 HV(0.025), and the metal sliding layer (3) is made of a single layer in only one pass and with a maximum grain size of at most 1 μm for at least 90% of the first grains forming the matrix and with a maximum grain size for at least 90% of the embedded grains, and a maximum particle size of at most 1.5 μm for the remaining grains making up 100% of all grains.
    • 本发明涉及一种用于制造双材料滑动轴承(1)的方法,由此在平坦的金属基板(8)上从气相减压地沉积至少两种不同颗粒类型的金属滑动层(3) 并且第一颗粒类型形成具有第一颗粒的基体,并且第二颗粒类型形成嵌入在金属滑动层(3)的基体中的晶粒,并且金属滑动层(3)被制造成具有更多的厚度(4) 超过250μm,维氏硬度低于100HV(0.025),并且金属滑动层(3)仅在一次通过中由单层制成,并且对于至少90%的最大晶粒尺寸至多为1μm, 形成基体的第一颗粒并且对于至少90%的嵌入晶粒具有最大晶粒尺寸,并且对于占所有晶粒的100%的剩余晶粒,最大粒径为至多1.5μm。
    • 27. 发明申请
    • Grain Size Tuning for Radiation Resistance
    • 颗粒尺寸调整抗辐射
    • US20170002456A1
    • 2017-01-05
    • US15102425
    • 2014-12-22
    • Mitra Lenore TaheriGreg Vetterick
    • Mitra Lenore TaheriGreg Vetterick
    • C23C14/58C23C14/34C23C14/54C23C14/35
    • C23C14/5806C23C14/16C23C14/345C23C14/351C23C14/541
    • A process for producing a radiation resistant nanocrystalline material having a polycrystalline microstructure from a starting material selected from metals and metal alloys. The process including depositing the starting material by physical vapor deposition onto a substrate that is maintained at a substrate temperature from about room temperature to about 850° C. to produce the nanocrystalline material. The process may also include heating the nanocrystalline material to a temperature of from about 450° C. to about 800° C. at a rate of temperature increase of from about 2° C./minute to about 30° C./minute; and maintaining the nanocrystalline material at the temperature of from about 450° C. to about 800° C. for a period from about 5 minutes to about 35 minutes. The nanocrystalline materials produced by the above process are also described. The nanocrystalline materials produced by the process are resistant to radiation damage.
    • 一种制造具有选自金属和金属合金的起始材料的具有多晶微结构的耐辐射纳米晶体材料的方法。 该方法包括通过物理气相沉积将起始材料沉积在保持在约室温至约850℃的衬底温度下的衬底上以产生纳米晶体材料。 该方法还可以包括以约2℃/分钟至约30℃/分钟的升温速率将纳米晶体材料加热至约450℃至约800℃的温度; 并将纳米晶体材料保持在约450℃至约800℃的温度下约5分钟至约35分钟的时间。 还描述了通过上述方法生产的纳米晶体材料。 由该方法生产的纳米晶体材料具有耐辐射损伤。