会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Semiconductor device and manufacturing method thereof
    • 半导体装置及其制造方法
    • US5413968A
    • 1995-05-09
    • US22876
    • 1993-02-25
    • Yasuo InoueKazuyuki SugaharaTakashi IpposhiYasuo YamaguchiTadashi Nishimura
    • Yasuo InoueKazuyuki SugaharaTakashi IpposhiYasuo YamaguchiTadashi Nishimura
    • H01L21/3205H01L21/285H01L21/768H01L23/485H01L23/52H01L23/522H01L27/11H01L21/44
    • H01L21/28518H01L23/485H01L27/11H01L27/1112H01L2924/0002
    • A semiconductor device includes a conductor layer (3, 7) having a silicon crystal, an insulator layer (5, 15) formed on the surface of the conductor layer (3, 7) having a contact hole therethrough to said surface of the conductor layer (3, 7), an interconnecting portion formed at a predetermined location in the insulator layer (5, 15) and having a contact hole (6, 9) the bottom surface of which becomes the surface of the conductor layer (3, 7), a barrier layer (14) formed at the bottom of said contact hole at least on the surface of the conductor layer (3, 7) in the interconnecting portion, and a metal silicide layer (12) formed on the barrier layer (14). This semiconductor device is manufactured by depositing the insulator layer (5, 15) having the contact hole (6, 9) on the conductor layer (3, 7) having the silicon crystal, forming the barrier layer (14) and the polysilicon layer (7, 10) overlapping each other in the contact hole (6, 9) and on the insulator layer (5, 15) and then patterning these overlapping barrier layer (14) and polysilicon layer (7, 10), forming a metal layer (8, 11) thereon to be silicidized, and removing unreacted metal. The semiconductor device thus manufactured prevents a suction of silicon from the conductor layer (3, 7) to the metal silicide layer (12) and hence prevents an increase in resistance value due to a deficiency of silicon produced in the conductor layer (3, 7), thereby minimizing a series resistance of the metal silicide layer (12), a contact portion and the conductor layer (3, 7).
    • 半导体器件包括具有硅晶体的导体层(3,7),形成在导体层(3,7)的表面上的绝缘体层(5,15),其具有穿过其的导体层的所述表面的接触孔 (3,7),形成在所述绝缘体层(5,15)中的预定位置处并具有其底表面成为所述导体层(3,7)的表面的接触孔(6,9)的互连部分, 至少在所述互连部分中的所述导体层(3,7)的表面上形成在所述接触孔的底部处的阻挡层(14)和形成在所述阻挡层(14)上的金属硅化物层(12) 。 该半导体器件通过在具有硅晶体的导体层(3,7)上沉积具有接触孔(6,9)的绝缘体层(5,15),形成阻挡层(14)和多晶硅层( 7,10)在接触孔(6,9)和绝缘体层(5,15)上彼此重叠,然后对这些重叠的阻挡层(14)和多晶硅层(7,10)进行构图,形成金属层 8,11)在其上被硅化,并除去未反应的金属。 这样制造的半导体器件防止硅从导体层(3,7)吸收到金属硅化物层(12),从而防止由于导体层(3,7)中产生的硅的缺陷导致的电阻值增加 ),从而使金属硅化物层(12),接触部分和导体层(3,7)的串联电阻最小化。
    • 23. 发明授权
    • Process for producing single crystal semiconductor layer and
semiconductor device produced by said process
    • 通过所述方法制造单晶半导体层和半导体器件的制造方法
    • US4822752A
    • 1989-04-18
    • US022717
    • 1987-03-06
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo Inoue
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo Inoue
    • H01L21/20H01L21/268H01L21/822H01L29/04H01L21/306H01L21/326H01L21/479
    • H01L21/8221H01L21/2026H01L21/268H01L29/045Y10S117/904Y10S148/09Y10S148/091Y10S148/093
    • Disclosed herein is a process for producing a single crystal layer of a semiconductor device, which comprises the steps of providing an oxide insulator layer separated by an opening part for seeding, on a major surface of a single crystal semiconductor substrate of the cubic system, providing a polycrystalline or amorphous semiconductor layer on the entire surface of the insulator layer inclusive of the opening part, then providing a protective layer comprising at least a reflective or anti-reflection film comprising strips of a predetermined width, in a predetermined direction relative to the opening part and at a predetermined interval, the protective layer capable of controlling the temperature distributions in the semiconductor layer at the parts corresponding to the stripes or the parts not corresponding to the stripes, thereby completing a base for producing a semiconductor device, thereafter the surface of the base is irradiated with an energy beam through the striped reflective or anti-reflection film to melt the polycrystalline or amorphous semiconductor and scanning the energy beam in a predetermined direction such that the direction of the crystal of the semiconductor re-solidified and converted into a single crystal accords with a {111} plane, to produce the single crystal of the semiconductor device. Also disclosed is a semiconductor device produced by the method, which comprises a single crystal layer having a wide range of a crystal in a predetermined direction relative to the facial orientation of the major surface of the substrate, and has a three-dimensional semiconductor circuit element construction.
    • 本发明公开了一种制造半导体器件的单晶层的方法,其包括以下步骤:在立方晶系的单晶半导体衬底的主表面上提供由用于接种的开口部分开的氧化物绝缘体层,提供 在包括开口部分的绝缘体层的整个表面上的多晶或非晶半导体层,然后提供保护层,该保护层至少包括反射膜或防反射膜,该反射膜或抗反射膜包括相对于开口的预定方向的预定宽度的条 部分并且以预定间隔,保护层能够控制对应于条纹的部分或不对应于条纹的部分的半导体层中的温度分布,从而完成用于制造半导体器件的基底,之后, 用能量束通过条纹反射照射基座 或抗反射膜,以熔化多晶或非晶半导体并沿预定方向扫描能量束,使得半导体晶体的方向重新固化并转换成单晶符合{111}面,以产生 半导体器件的单晶。 还公开了一种通过该方法制造的半导体器件,该半导体器件包括相对于衬底的主表面的面取向在预定方向上具有宽范围的晶体的单晶层,并且具有三维半导体电路元件 施工。
    • 27. 发明授权
    • Process for producing single crystal semiconductor layer and
semiconductor device produced by said process
    • 通过所述方法制造单晶半导体层和半导体器件的制造方法
    • US5371381A
    • 1994-12-06
    • US587500
    • 1990-09-24
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo Inoue
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo Inoue
    • H01L21/20H01L21/268H01L21/822H01L29/04H01L27/04
    • H01L21/8221H01L21/2026H01L21/268H01L29/045Y10S117/904Y10S148/09Y10S148/091Y10S148/093
    • Disclosed herein is a process for producing a single crystal layer of a semiconductor device, which comprises the steps of providing an oxide insulator layer separated by an opening part for seeding, on a major surface of a single crystal semiconductor substrate of the cubic system, providing a polycrystalline or amorphous semiconductor layer on the entire surface of the insulator layer inclusive of the opening part, then providing a protective layer comprising at least a reflective or anti-reflection film comprising stripes of a predetermined width, in a predetermined direction relative to the opening part and at a predetermined interval, the protective layer capable of controlling the temperature distributions in the semiconductor layer at the parts corresponding to the stripes or the parts not corresponding to the stripes, thereby completing a base for producing a semiconductor device, thereafter the surface of the base is irradiated with an energy beam through the striped reflective or anti-reflection film to melt the polycrystalline or amorphous semiconductor and scanning the energy beam in a predetermined direction such that the direction of the crystal of the semiconductor re-solidified and converted into a single crystal accords with a {111} plane, to produce the single crystal of the semiconductor device. Also disclosed is a semiconductor device produced by the method, which comprises a single crystal layer having a wide range of a crystal in a predetermined direction relative to the facial orientation of the major surface of the substrate, and has a three-dimensional semiconductor circuit element construction.
    • 本发明公开了一种制造半导体器件的单晶层的方法,其包括以下步骤:在立方晶系的单晶半导体衬底的主表面上提供由用于接种的开口部分开的氧化物绝缘体层,提供 在包括开口部分的绝缘体层的整个表面上的多晶或非晶半导体层,然后提供保护层,该保护层至少包括反射膜或防反射膜,该反射膜或防反射膜包含预定宽度的条,相对于开口 部分并且以预定间隔,保护层能够控制对应于条纹的部分或不对应于条纹的部分的半导体层中的温度分布,从而完成用于制造半导体器件的基底,之后, 通过条纹反射照射能量束 e或抗反射膜,以熔化多晶或非晶半导体并沿预定方向扫描能量束,使得半导体晶体的方向重新固化并转换成单晶符合{111}面,至 产生半导体器件的单晶。 还公开了一种通过该方法制造的半导体器件,该半导体器件包括相对于衬底的主表面的面取向在预定方向上具有宽范围的晶体的单晶层,并且具有三维半导体电路元件 施工。
    • 28. 发明授权
    • Apparatus for detecting three-dimensional configuration of object
employing optical cutting method
    • 使用光学切割方法检测物体的三维构型的装置
    • US4993835A
    • 1991-02-19
    • US424979
    • 1989-10-23
    • Yasuo InoueTadashi Nishimura
    • Yasuo InoueTadashi Nishimura
    • G01B11/24G01B11/25
    • G01B11/25
    • Disclosed is an apparatus for detecting the three-dimensional configuration of an object employing an optical cutting method. A light projector pulse-flashes slit-shaped light and causes the light to scan an object at a predetermined speed. An image sensor having a plurality of pixels is disposed in opposition to the object. An optical system forms on the image sensor an image of an optical cutting line formed on the surface of the object by the light. A difference detector detects the difference between the on- and off- levels of each of pulses of the image detected by the pixels of the sensor. A time calculator calculates the time at which the image has passed each of the pixels, on the basis of the difference detected by the difference detector. A configuration calculator calculates the three-dimensional configuration of the object on the basis of the calculated passage time and the scanning speed of the slit-shaped light. Since the difference between the levels of each pulse of the image is obtained, any optical signals resulting from a factor other than the pertinent pulses, such as influence by the background of the object, or a flash can be excluded, and the configuration can be detected with a high level of precision.
    • 公开了一种使用光学切割方法检测物体的三维构造的装置。 光投射器脉冲闪烁狭缝状光,并使光以预定速度扫描物体。 具有多个像素的图像传感器设置成与物体相对。 光学系统在图像传感器上形成通过光形成在物体表面上的光学切割线的图像。 差分检测器检测由传感器的像素检测的图像的每个脉冲的开和关电平之间的差异。 时间计算器基于由差分检测器检测到的差异来计算图像已经通过每个像素的时间。 配置计算器基于所计算的通过时间和狭缝状光的扫描速度来计算物体的三维配置。 由于获得图像的每个脉冲的电平之间的差异,所以可以排除由诸如对象的背景或闪光的相关脉冲之外的因素产生的任何光信号,并且可以将配置 以高精度检测。