会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明申请
    • PLASMA PROCESSING APPARATUS
    • 等离子体加工设备
    • US20080216956A1
    • 2008-09-11
    • US11850722
    • 2007-09-06
    • SHIGERU NAKAMOTOTatehito UsuiKazuhiro JooTakashi FujiiHiroshige Uchida
    • SHIGERU NAKAMOTOTatehito UsuiKazuhiro JooTakashi FujiiHiroshige Uchida
    • C23F1/00
    • G01B11/0625G01B11/0683H01J37/32935H01J37/32972H01J2237/334
    • To provide a plasma processing apparatus using a measuring method of a film thickness of a material to be processed, which method is capable of accurately measuring an actual residual film amount and an etching depth of the layer to be processed. The plasma processing apparatus includes: a detector 11 adapted to detect interference light of a plurality of wavelengths from the surface of a sample in a vacuum container; pattern comparing means 15 adapted to compare actual deviation pattern data relating to the interference light obtained at an arbitrary time point during the processing of the sample, with a plurality of standard deviation patterns which are data of interference light of a plurality of wavelengths relating to processing of another sample obtained before the processing of the sample, and which correspond to a plurality of thicknesses of the film, and adapted to calculate a deviation between the actual deviation pattern data and the standard deviation patterns; deviation comparing means 115 adapted to compare the deviation between the actual deviation pattern data and the standard deviation patterns, with a deviation set beforehand, and to output data relating to the film thickness of the sample at the time; residual film thickness time series data recording means 18 adapted to record the data relating to the film thickness as time series data; and an end point determining device 230 adapted to determine that etching of a predetermined amount is ended, by using the data of the film thickness.
    • 为了提供使用待处理材料的膜厚测量方法的等离子体处理装置,该方法能够精确地测量待处理层的实际残留膜量和蚀刻深度。 等离子体处理装置包括:检测器11,其适于从真空容器中的样品的表面检测多个波长的干涉光; 模式比较装置15,其适于将与在样本处理期间的任意时间点获得的干涉光相关的实际偏差图案数据与作为与处理有关的多个波长的干涉光的数据的多个标准偏差图案进行比较 在样品处理之前获得并且对应于膜的多个厚度的另一个样品,并且适于计算实际偏差图案数据和标准偏差图案之间的偏差; 偏差比较装置115,用于比较实际偏差图案数据和标准偏差图案之间的偏差,预先设定的偏差,并输出与当时样品的膜厚有关的数据; 残膜厚度时间序列数据记录装置18,适于将与薄膜厚度相关的数据记录为时间序列数据; 以及适于通过使用膜厚度的数据来确定预定量的蚀刻结束的端点确定装置230。
    • 23. 发明授权
    • Aligned carbon nanotube films and a process for producing them
    • 对准的碳纳米管膜及其制造方法
    • US07378075B2
    • 2008-05-27
    • US10393364
    • 2003-03-21
    • Masao SomeyaTakashi Fujii
    • Masao SomeyaTakashi Fujii
    • D01F9/12
    • B82Y30/00D01F9/127Y10S977/843
    • Fine catalyst particles are loaded on a sol-gel method porous carrier having fine pores of 0.1-50 nm and a carbon compound is decomposed to form a carbon nanotube film on the carrier that is aligned perpendicular to the carrier surface. The starting sol to be processed by a sol-gel method is a dispersion of fine alumina particles, fine aluminum hydroxide particles, fine silica particles or mixtures thereof. Alternatively, the starting sol may be an aluminum alkoxide, an alkoxysilane, a mixture thereof or a solution of an aluminum alkoxide, an alkoxysilane or a mixture thereof. If desired, a flammable or a thermally decomposable organic compound may be added as a microporous template.
    • 将细小的催化剂颗粒装载在具有0.1-50nm的细孔的溶胶 - 凝胶法多孔载体上,并且碳化合物被分解以在载体上垂直于载体表面排列形成碳纳米管膜。 通过溶胶 - 凝胶法处理的起始溶胶是氧化铝微粒,细小氢氧化铝颗粒,二氧化硅微粒或其混合物的分散体。 或者,起始溶胶可以是烷氧基铝,烷氧基硅烷,其混合物或醇铝,烷氧基硅烷或其混合物的溶液。 如果需要,可以加入可燃或可热分解的有机化合物作为微孔模板。
    • 24. 发明申请
    • Process and Apparatus for Producing Fine Particles
    • 生产微粒的工艺和设备
    • US20080006954A1
    • 2008-01-10
    • US11574785
    • 2005-09-07
    • Kazuhiro YubutaKeitaroh NakamuraTakashi Fujii
    • Kazuhiro YubutaKeitaroh NakamuraTakashi Fujii
    • B29B9/00
    • C01G23/006B01J19/088B01J2219/0869B01J2219/0871B01J2219/0877B01J2219/0884B01J2219/0898B82Y30/00C01B13/34C01F7/027C01F7/30C01F7/308C01G1/00C01G1/02C01P2004/62C01P2004/64C09C1/407
    • A fine particle producing process introduces a material for producing fine particles into a thermal plasma flame to make a vapor-phase mixture and quenches the vapor-phase mixture to form the fine particles. In the process, the material for producing the fine particles is dispersed or dissolved in a dispersion medium or solvent, preferably containing a combustible material to prepare a dispersion such as a slurry, a colloidal solution or a dissolution solution, the dispersion is made into a form of droplets, or the material for producing the fine particles is dispersed with a carrier gas and a combustible material and the dispersion in a droplet form or the dispersed material is introduced into the thermal plasma flame. In the fine particle producing process and apparatus, a gas of an amount sufficient to quench the vapor-phase mixture is supplied toward a tail of the thermal plasma flame. In the process and apparatus, primary fine particles are introduced into a cyclone to be subjected to cooling and classification and secondary fine particles having a particle size of 100 nm or less which are left upon removal of coarse particles are recovered.
    • 微细粒子的制造方法将用于制造细颗粒的材料引入热等离子体火焰中以形成气相混合物并使气相混合物骤冷以形成微粒。 在此过程中,用于制造细颗粒的材料分散或溶解在优选含可燃材料的分散介质或溶剂中以制备浆料,胶体溶液或溶解溶液等分散体,将其分散成 液滴的形式或用于制造细颗粒的材料用载气和可燃材料分散,并且将液滴形式的分散体或分散的材料引入热等离子体火焰中。 在微粒生成方法和装置中,向热等离子体火焰的尾部供给足以猝灭气相混合物的量的气体。 在该方法和装置中,将初级细颗粒引入旋风分离器中以进行冷却和分级,并回收在除去粗颗粒时残留的粒径为100nm以下的二次细颗粒。
    • 28. 发明授权
    • Process for producing cold field-emission cathodes
    • 制造冷场发射阴极的方法
    • US07150801B2
    • 2006-12-19
    • US10784211
    • 2004-02-24
    • Takashi FujiiMasao Someya
    • Takashi FujiiMasao Someya
    • B32B37/00
    • B82Y10/00H01J9/025H01J2201/30469
    • A process for producing a cold field-emission cathode by patterning an aligned carbon nanotube film on a surface of a substrate for electrode, comprising the steps of preparing an aligned carbon nanotube film on a surface of a basic substrate, patterning a conductive binder on a surface of a substrate for electrode, and bonding a surface of the aligned carbon nanotube film to a surface of the conductive binder and then transferring the aligned carbon nanotube film by stripping the basic substrate, leaving those portions of the aligned carbon nanotube film behind which have been bonded to the conductive binder.
    • 一种制造冷场发射阴极的方法,其特征在于,在电极用基板的表面上形成取向碳纳米管膜,其特征在于,包括:在基板的表面上配置取向碳纳米管膜, 用于电极的基板的表面,并且将取向的碳纳米管膜的表面粘合到导电粘合剂的表面,然后通过剥离碱性基材来转移取向的碳纳米管膜,留下其后面的排列的碳纳米管膜的那些部分 被粘合到导电粘合剂上。
    • 29. 发明授权
    • Optical fiber, dispersion compensator, optical transmission line and optical communications system
    • 光纤,色散补偿器,光传输线和光通信系统
    • US07076140B2
    • 2006-07-11
    • US10717202
    • 2003-11-20
    • Yoshinori YamamotoTakashi FujiiTakatoshi KatoEisuke Sasaoka
    • Yoshinori YamamotoTakashi FujiiTakatoshi KatoEisuke Sasaoka
    • G02B6/02
    • G02B6/03666G02B6/02261G02B6/03644G02B6/278G02B6/29377H04B10/2525
    • The present invention relates to an optical fiber or the like which allows more precise compensation for the chromatic dispersion of a transmission optical fiber over a broad wavelength band. The optical fiber has a chromatic dispersion of −100 ps/nm/km or less in a wavelength band of 1535 to 1565 nm, 1565 to 1610 nm, 1554 to 1608 nm or 1535 to 1610 nm. In particular, the chromatic dispersion profile of the fundamental mode of this optical fiber defined by the orthogonal coordinate system of the wavelength and chromatic dispersion value has a shape such that, over the entire wavelength band except for the shortest and longest wavelengths thereof, the chromatic dispersion values on the chromatic dispersion profile are respectively located on the minus side of the associated chromatic dispersion values on a straight line connecting the chromatic dispersion values at the shortest and longest wavelength. Since the chromatic dispersion profile of the transmission optical fiber such as a conventional single-mode fiber or the like has a shape opposite to that of this optical fiber, the chromatic dispersion of the transmission optical fiber can be compensated for more precisely by using this optical fiber as a dispersion compensating optical fiber.
    • 光纤等技术领域本发明涉及能够对宽波段的传输光纤的色散进行更精确的补偿的光纤等。 在1535〜1565nm,1565〜1610nm,1554〜1608nm或1535〜1610nm的波长带中,光纤的色散为-100ps / nm / km以下。 特别地,由波长和色散值的正交坐标系定义的该光纤的基本模式的色散曲线具有这样的形状,使得除了其最短和最长波长之外的整个波长带上,色度 色散曲线上的色散值分别位于连接最短和最长波长的色散值的直线上相关联的色散值的负侧。 由于诸如常规单模光纤等的传输光纤的色散曲线具有与该光纤相反的形状,所以可以通过使用该光学器件更精确地补偿传输光纤的色散 光纤作为色散补偿光纤。