会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 27. 发明授权
    • Compositionally-graded band gap heterojunction solar cell
    • 组分梯度带隙异质结太阳能电池
    • US08653360B2
    • 2014-02-18
    • US12849966
    • 2010-08-04
    • Stephen W. BedellHarold J. HovelDaniel A. InnsJee H. KimAlexander ReznicekDevendra K. Sadana
    • Stephen W. BedellHarold J. HovelDaniel A. InnsJee H. KimAlexander ReznicekDevendra K. Sadana
    • H01L31/00H01L21/00
    • H01L31/065H01L31/03765H01L31/075H01L31/18Y02E10/548
    • A photovoltaic device includes a composition modulated semiconductor structure including a p-doped first semiconductor material layer, a first intrinsic compositionally-graded semiconductor material layer, an intrinsic semiconductor material layer, a second intrinsic compositionally-graded semiconductor layer, and an n-doped first semiconductor material layer. The first and second intrinsic compositionally-graded semiconductor material layers include an alloy of a first semiconductor material having a greater band gap width and a second semiconductor material having a smaller band gap with, and the concentration of the second semiconductor material increases toward the intrinsic semiconductor material layer in the first and second compositionally-graded semiconductor material layers. The photovoltaic device provides an open circuit voltage comparable to that of the first semiconductor material, and a short circuit current comparable to that of the second semiconductor material, thereby increasing the efficiency of the photovoltaic device.
    • 光伏器件包括组成调制的半导体结构,其包括p掺杂的第一半导体材料层,第一本征成分梯度半导体材料层,本征半导体材料层,第二本征组分梯度半导体层和n掺杂的第一半导体层 半导体材料层。 第一和第二本征成分梯度半导体材料层包括具有较大带隙宽度的第一半导体材料和具有较小带隙的第二半导体材料的合金,并且第二半导体材料的浓度朝向本征半导体 第一和第二组成梯度半导体材料层中的材料层。 光电器件提供与第一半导体材料相当的开路电压,以及与第二半导体材料相当的短路电流,从而提高光伏器件的效率。
    • 29. 发明授权
    • CMOS transistors with stressed high mobility channels
    • 具有应力高移动性通道的CMOS晶体管
    • US08354694B2
    • 2013-01-15
    • US12855738
    • 2010-08-13
    • Stephen W. BedellJee H. KimSiegfried L. MaurerAlexander ReznicekDevendra K. Sadana
    • Stephen W. BedellJee H. KimSiegfried L. MaurerAlexander ReznicekDevendra K. Sadana
    • H01L29/66
    • H01L21/823807H01L21/823814H01L29/7843H01L29/7848
    • A p-type field effect transistor (PFET) having a compressively stressed channel and an n-type field effect transistor (NFET) having a tensilely stressed channel are formed. In one embodiment, a silicon-germanium alloy is employed as a device layer, and the source and drain regions of the PFET are formed employing embedded germanium-containing regions, and source and drain regions of the NFET are formed employing embedded silicon-containing regions. In another embodiment, a germanium layer is employed as a device layer, and the source and drain regions of the PFET are formed by implanting a Group IIIA element having an atomic radius greater than the atomic radius of germanium into portions of the germanium layer, and source and drain regions of the NFET are formed employing embedded silicon-germanium alloy regions. The compressive stress and the tensile stress enhance the mobility of charge carriers in the PFET and the NFET, respectively.
    • 形成具有压应力通道的p型场效应晶体管(PFET)和具有拉伸应力通道的n型场效应晶体管(NFET)。 在一个实施例中,使用硅 - 锗合金作为器件层,并且使用嵌入的含锗区域形成PFET的源极和漏极区域,并且使用嵌入的含硅区域形成NFET的源极和漏极区域 。 在另一个实施例中,锗层用作器件层,PFET的源极和漏极区通过将原子半径大于锗的原子半径的IIIA族元素注入到锗层的部分中而形成, 使用嵌入式硅 - 锗合金区域形成NFET的源极和漏极区域。 压应力和拉伸应力分别提高了PFET和NFET中载流子的迁移率。