会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 23. 发明申请
    • Gradient learning for probabilistic ARMA time-series models
    • 概率ARMA时间序列模型的梯度学习
    • US20060129395A1
    • 2006-06-15
    • US11011864
    • 2004-12-14
    • Bo ThiessonChristopher Meek
    • Bo ThiessonChristopher Meek
    • G10L15/12
    • G06K9/00523
    • The subject invention leverages the conditional Gaussian (CG) nature of a continuous variable stochastic ARMAxp time series model to efficiently determine its parametric gradients. The determined gradients permit an easy means to construct a parametric structure for the time series model. This provides a gradient-based alternative to the expectation maximization (EM) process for learning parameters of the stochastic ARMAxp time series model. Thus, gradients for parameters can be computed and utilized with a gradient-based learning method for estimating the parameters. This allows values of continuous observations in a time series to be predicted utilizing the stochastic ARMAxp time series model, providing efficient and accurate predictions.
    • 本发明利用连续可变随机ARMA 时间序列模型的条件高斯(CG)特性来有效地确定其参数梯度。 确定的梯度允许构建时间序列模型的参数结构的简单方法。 这提供了用于学习随机ARMA时间序列模型的参数的期望最大化(EM)过程的基于梯度的替代。 因此,可以使用基于梯度的学习方法来计算和利用参数梯度来估计参数。 这允许使用随机ARMA 时间序列模型来预测时间序列中的连续观测值,从而提供有效和准确的预测。
    • 26. 发明申请
    • Systems and methods for optimizing decision graph collaborative filtering
    • 优化决策图协同过滤的系统和方法
    • US20050049987A1
    • 2005-03-03
    • US10654131
    • 2003-09-03
    • Christopher MeekDavid ChickeringChristopher WearePradeep Gupta
    • Christopher MeekDavid ChickeringChristopher WearePradeep Gupta
    • G06F17/00G06N5/02
    • G06Q30/02G06Q10/10
    • The present invention provides collaborative filtering systems and methods employing default scores of decision graphs/trees to quickly create a top-n prediction list that can efficiently determine a user's interest in items. In one instance of the present invention, the list is refined by utilizing a variable maximum score algorithm and/or an invalidation list algorithm to insert items that score above an inclusion threshold set by a last item in the top-n prediction list. In another instance of the present invention, an invalidation list for a decision graph and/or decision tree is utilized to create a top-n prediction list. An algorithm employing default scores is then utilized to refine the top-n prediction list to insert items with default scores above an inclusion threshold set by a last item in the top-n prediction list.
    • 本发明提供协同过滤系统和采用默认分数的决策图/树的方法来快速地创建可以有效地确定用户对项目的兴趣的顶层预测列表。 在本发明的一个实例中,通过使用可变最大分数算法和/或无效化列表算法来精简列表来插入在顶部n个预测列表中由最后一个项目设置的包含阈值以上的项目。 在本发明的另一个实例中,利用用于决策图和/或决策树的无效列表来创建前n个预测列表。 然后使用采用默认分数的算法来改进top-n预测列表,以将具有默认分数的项目插入高于由top-n预测列表中的最后项目设置的包含阈值的项目。
    • 28. 发明申请
    • SYSTEMS AND METHODS FOR ADAPTIVE HANDWRITING RECOGNITION
    • 用于自适应手写识别的系统和方法
    • US20070127818A1
    • 2007-06-07
    • US11672458
    • 2007-02-07
    • Bo ThiessonChristopher Meek
    • Bo ThiessonChristopher Meek
    • G06K9/18
    • G06K9/6292G06K9/222
    • The present invention utilizes generic and user-specific features of handwriting samples to provide adaptive handwriting recognition with a minimum level of user-specific enrollment data. By allowing generic and user-specific classifiers to facilitate in a recognition process, the features of a specific user's handwriting can be exploited to quickly ascertain characteristics of handwriting characters not yet entered by the user. Thus, new characters can be recognized without requiring a user to first enter that character as enrollment or “training” data. In one instance of the present invention, processing of generic features is accomplished by a generic classifier trained on multiple users. In another instance of the present invention, a user-specific classifier is employed to modify a generic classifier's classification as required to provide user-specific handwriting recognition.
    • 本发明利用手写样本的通用和用户特定的特征来提供具有最低级别的用户特定注册数据的自适应手写识别。 通过允许通用和用户特定的分类器便于识别过程,可以利用特定用户手写的特征来快速确定用户尚未输入的手写字符的特征。 因此,可以识别新的字符,而不需要用户首先将该字符输入作为注册或“训练”数据。 在本发明的一个实例中,通用特征的处理由对多个用户进行训练的通用分类器来完成。 在本发明的另一个实例中,使用用户特定的分类器根据需要修改通用分类器的分类以提供用户特定的手写识别。