会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • Ignition timing control system for internal combustion engine
    • 内燃机点火正时控制系统
    • US5390491A
    • 1995-02-21
    • US186157
    • 1994-01-25
    • Toshihiro SuzumuraYukihiro Yamashita
    • Toshihiro SuzumuraYukihiro Yamashita
    • F01N3/20F01N3/24F01N11/00F02D41/02F02P5/15
    • F01N11/007F02D41/0255F02P5/1506F01N2550/02F01N2900/0422Y02T10/26Y02T10/46Y02T10/47
    • An ignition timing control system for an internal combustion engine which can perform fast catalyst warm-up operation and prevent stalling at the restart of the internal combustion engine at a low temperature is disclosed. This control system judges whether the engine is in the start state or not, whether the cooling water temperature is lower than the specified temperature or not, and whether the intake air temperature is higher than the preset temperature or not. When these judgments are all affirmative, the system further judges whether the time after the start has reached the control starting time or not, and then whether the engine is in the idle operation state or not. When these judgments are both affirmative, the system sets the target ignition timing retard amount and the ignition timing gradual change time according to the intake air temperature, and then actually performs the ignition timing control according to the target retard amount and gradual retard time. Alternatively, the control system judges deterioration state of a catalyst and controls the ignition timing in dependence on the catalyst deterioration state and the intake air temperature.
    • 公开了一种用于内燃机的点火正时控制系统,其能够执行快速催化剂预热操作并且防止内燃机在低温重启时的停止。 该控制系统判断发动机是否处于开始状态,冷却水温度是否低于规定温度,以及进气温度是否高于预设温度。 当这些判断是肯定的时,系统进一步判断起动时间是否达到控制开始时间,然后判断发动机是否处于空转运转状态。 当这些判断是肯定的时,系统根据进气温度设定目标点火正时延迟量和点火正时逐渐变化时间,然后根据目标延迟量和逐渐延迟时间实际执行点火正时控制。 或者,控制系统判断催化剂的劣化状态,并根据催化剂劣化状态和进气温度来控制点火正时。
    • 28. 发明授权
    • Control apparatus for an internal combustion engine
    • 一种用于内燃机的控制装置
    • US07131435B2
    • 2006-11-07
    • US10920157
    • 2004-08-18
    • Hideki IwatsukiYukihiro YamashitaAtsushi Sugimura
    • Hideki IwatsukiYukihiro YamashitaAtsushi Sugimura
    • F02P3/05
    • F02D41/123F02P3/0435
    • In step 400, microcomputer 12 calculates a temperature change amount ΔT1 of ignition coil FC caused by the heat generating from the ignition coil FC, based on a previous calculated temperature T(n−1) of ignition coil FC and an engine rotational speed. In step 410, the microcomputer 12 calculates a temperature change amount ΔT2 of ignition coil FC caused by the heat received from the engine, based on the previous calculated temperature T(n−1) of ignition coil FC and a cooling water temperature of the engine. In step 420, the microcomputer 12 calculates a temperature change amount ΔT3 of ignition coil FC caused by the heat released to the outside, based on the previous calculated temperature T(n−1) of ignition coil FC and an intake air temperature of the engine. Then, in step 430, the microcomputer 12 calculates a present ignition coil temperature T(n) based on these change amounts ΔT1, ΔT2, and ΔT3.
    • 在步骤400中,微型计算机12基于先前计算的点火线圈FC的温度T(n-1)和发动机转速来计算由点火线圈FC产生的热量引起的点火线圈FC的温度变化量DeltaT 1。 在步骤410中,微型计算机12基于先前计算的点火线圈FC的温度T(n-1)和冷却水的温度来计算由发动机接收的热量引起的点火线圈FC的温度变化量DeltaT 2 发动机。 在步骤420中,微型计算机12基于先前计算的点火线圈FC的温度T(n-1)和进气温度T(n-1),计算由向外部释放的热量引起的点火线圈FC的温度变化量DeltaT 3 发动机。 然后,在步骤430中,微型计算机12基于这些变化量DeltaT 1,DeltaT 2和DeltaT 3来计算当前点火线圈温度T(n)。
    • 29. 发明授权
    • System for diagnosing degradation of air-fuel sensor
    • 用于诊断空气 - 燃料传感器降解的系统
    • US07040307B2
    • 2006-05-09
    • US11209049
    • 2005-08-23
    • Wataru NagashimaYukihiro YamashitaNaoki Yoshiume
    • Wataru NagashimaYukihiro YamashitaNaoki Yoshiume
    • F02B75/08G01M19/00
    • F02D41/222F01N11/00F01N2550/00F02D2041/1431Y02T10/40
    • An air-fuel ratio detected by an air-fuel ratio sensor is periodically varied by executing a PI control. During the PI control, a time period in which the detected air-fuel ratio passes through a predetermined rich-side range is defined as a rich-side time constant, and a time period in which the detected air fuel ratio passes through a predetermined lean-side range is defined as a lean-side time constant. A rich-side time delay represents a time period in which an air-fuel correction amount is increasingly corrected to exceed a rich-side threshold, and a lean-side time delay represents a time period in which the air-fuel correction amount is decreasingly corrected to exceed a lean-side threshold. These time constants and time delays are compared with a determining value to diagnose degradation of an air-fuel ratio sensor.
    • 通过执行PI控制来周期性地改变由空燃比传感器检测的空燃比。 在PI控制期间,将检测出的空燃比通过规定的浓侧范围的时间段定义为浓侧时间常数,检测出的空燃比通过规定的稀薄时间 边范围被定义为瘦侧时间常数。 富侧时间延迟表示空燃比校正量越来越多地校正为超过浓侧阈值的时间段,稀侧时间延迟表示空燃比校正量逐渐减少的时间段 修正为超过瘦侧阈值。 将这些时间常数和时间延迟与确定值进行比较以诊断空燃比传感器的劣化。