会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明授权
    • Method and apparatus for chemical/mechanical planarization (CMP) of a
semiconductor substrate having shallow trench isolation
    • 具有浅沟槽隔离的半导体衬底的化学/机械平面化(CMP)的方法和装置
    • US6165052A
    • 2000-12-26
    • US192518
    • 1998-11-16
    • Chen-Hua YuSyun-Ming Jang
    • Chen-Hua YuSyun-Ming Jang
    • B24B37/04B24B49/16H01L21/306B24B1/00
    • B24B37/013B24B37/04B24B37/042B24B49/16H01L21/30625
    • A method to planarize the surface of a semiconductor substrate having shallow trench isolation (STI) reduces erosion of a silicon nitride planarization stop layer, reduces dishing of large areas of the shallow trench isolation, and prevents under polishing of the surface of the semiconductor substrate that will leave portions of the silicon dioxide that fills the shallow trenches covering the silicon nitride planarization stop exposed, is described. The method to planarize the surface of a semiconductor substrate having shallow trenches begins by chemical/mechanical planarization polishing at a first product of platen pressure and platen speed to planarize the semiconductor substrate. Polishing at a first product of platen pressure and platen speed will cause a high rate of material removal with low selectivity to increase production throughput. The silicon nitride stop layer will be examined to determine an end point exposure of the silicon nitride stop layer. When the end point exposure of the silicon nitride stop layer is reached, chemical/mechanical planarization polishing at a low product of platen pressure and platen speed is started to planarize the semiconductor substrate of slow over polish to control thickness of a trench oxide of the shallow trench isolation to reduce dishing and minimize erosion. The method further has the step of buffing the surface of the semiconductor substrate to remove any residue from the chemical/mechanical planarization polishing and to remove any microscratches from the surface of the semiconductor substrate.
    • 平坦化具有浅沟槽隔离(STI)的半导体衬底的表面的方法减少了氮化硅平坦化停止层的侵蚀,减少了大面积浅沟槽隔离的凹陷,并且防止在半导体衬底的表面的抛光 将描述填充覆盖氮化硅平坦化止挡露出的浅沟槽的二氧化硅部分。 平面化具有浅沟槽的半导体衬底的表面的方法开始于在压板压力和压板速度的第一乘积上的化学/机械平面化抛光,以使半导体衬底平坦化。 在压板压力和压板速度的第一个产品上进行抛光将导致高选择性的材料去除率,从而提高生产量。 将检查氮化硅阻挡层以确定氮化硅阻挡层的端点暴露。 当达到氮化硅终止层的终点曝光时,开始以压板压力和压板速度的低乘积进行化学/机械平面化抛光,以平缓化缓慢过抛光的半导体衬底,以控制浅层的沟槽氧化物的厚度 沟槽隔离以减少凹陷和最小化侵蚀。 该方法还具有抛光半导体衬底的表面以从化学/机械平面化抛光中除去任何残余物并从半导体衬底的表面去除任何微细凹凸的步骤。
    • 14. 发明授权
    • Sandwiched middle antireflection coating (SMARC) process
    • 三明治中抗反射涂层(SMARC)工艺
    • US5871886A
    • 1999-02-16
    • US764288
    • 1996-12-12
    • Chen-Hua YuSyun-Ming Jang
    • Chen-Hua YuSyun-Ming Jang
    • G03F7/09H01L21/027G03F7/00
    • H01L21/0276G03F7/091
    • A method of patterning a layer of reflective material, such as a layer of conductor metal, using a layer of antireflection coating material sandwiched between two layers of photoresist. A first layer of photoresist is formed on an integrated circuit wafer and provides a planar surface for subsequent layers of material. A layer of antireflection coating material is formed on the layer of first photoresist and a layer of second photoresist is formed on the layer of antireflection coating material. The layer of second photoresist is selectively exposed and developed. The layer of antireflection coating material is patterned using dry etching and the patterned layer of second photoresist as a mask. The layer of first photoresist is then patterned using dry etching and the patterned layer of antireflection coating material as a mask. The layer of reflecting material is then patterned using dry etching and the patterned layer of first photoresist as a mask. The patterned layer of first photoresist is then removed.
    • 使用夹在两层光致抗蚀剂之间的抗反射涂层层来图案化反射材料层(例如导体金属层)的方法。 在集成电路晶片上形成第一层光致抗蚀剂,并为随后的材料层提供平面。 在第一光致抗蚀剂层上形成防反射涂层,在抗反射涂层层上形成第二光致抗蚀剂层。 选择性地曝光和显影第二光致抗蚀剂层。 使用干蚀刻和第二光致抗蚀剂的图案化层作为掩模来图案化抗反射涂层材料层。 然后使用干蚀刻和防反射涂层材料的图案化层作为掩模来将第一光致抗蚀剂层图案化。 然后使用干蚀刻和第一光致抗蚀剂的图案化层作为掩模来图案化反射材料层。 然后去除第一光致抗蚀剂的图案化层。
    • 15. 发明授权
    • Robust end-point detection for contact and via etching
    • 用于接触和通孔蚀刻的鲁棒端点检测
    • US5747380A
    • 1998-05-05
    • US606833
    • 1996-02-26
    • Chen-Hua YuSyun-Ming Jang
    • Chen-Hua YuSyun-Ming Jang
    • H01L21/66H01L21/768H01L21/44
    • B24B37/013H01L21/768H01L22/26Y10S438/926
    • A method for improving the end-point detection for contact and via etching is disclosed. The disclosure describes the deliberate addition of dummy patterns in the form of contact and via holes to the regular functional holes in order to increase the amount of etchable surface area. It is shown that, one can then take advantage of the marked change in the composition of the etchant gas species that occurs as soon as what was once a large exposed area has now been consumed through the etching process. This then gives a strong and robust signal for the end of the etching process. This in turn results in better controlled and more reliable product. It is also indicated that with the full uniform pattern of the via layers now possible, the chemical/mechanical polishing process becomes much less pattern sensitive.
    • 公开了一种用于改善接触和通孔蚀刻的端点检测的方法。 本公开描述了将接触孔和通孔形式的虚拟图案有意添加到常规功能孔,以增加可蚀刻表面积的量。 可以看出,一旦现在通过蚀刻工艺消耗了大的暴露区域,就可以利用所发生的蚀刻剂气体种类的组成的明显变化。 这就为腐蚀过程的结束提供了一个强大而鲁棒的信号。 这反过来导致更好的控制和更可靠的产品。 还指出,现在可能通孔层的完全均匀图案,化学/机械抛光工艺变得更加模式敏感。
    • 16. 发明授权
    • Self-aligned sacrificial oxide for shallow trench isolation
    • 用于浅沟槽隔离的自对准牺牲氧化物
    • US5731241A
    • 1998-03-24
    • US857160
    • 1997-05-15
    • Syun-Ming JangYing-Ho ChenChen-Hua Yu
    • Syun-Ming JangYing-Ho ChenChen-Hua Yu
    • H01L21/762H01L21/76
    • H01L21/76232Y10S148/05
    • The present invention provides a method of manufacturing a sacrificial self aligned sub-atmospheric chemical vapor deposition (SACVD) O.sub.3 TEOS layer 50 70 over a trench oxide 40 to protect the trench oxide from excessive subsequent etch steps. The SACVD O.sub.3 TEOS layer has a higher deposition rate over the trench oxide layer 40 than over the surrounding non-trench thermally grown pad oxides. The trench oxide is preferably formed using a process of PECVD, LPTEOS, or O.sub.3 -TEOS. The invention provides two preferred embodiments: (1) a first self aligned sacrificial O.sub.3 TEOS oxide layer 50 deposited before the pad oxide etch and (2) a second self aligned sacrificial O.sub.3 TEOS oxide layer 70 deposited before the sacrificial implant oxide etch. The invention can be applied in a variety of situations where the trench oxide is exposed to damaging etches.
    • 本发明提供了一种在沟槽氧化物40上制造牺牲自对准亚大气压化学气相沉积(SACVD)O3 TEOS层5070的方法,以保护沟槽氧化物免于过多的后续蚀刻步骤。 SACVD O3 TEOS层在沟槽氧化物层40上的沉积速率高于周围的非沟槽热生长焊盘氧化物。 沟槽氧化物优选使用PECVD,LPTEOS或O3-TEOS的工艺形成。 本发明提供了两个优选实施例:(1)在氧化层蚀刻之前沉积的第一自对准牺牲O 3 TEOS氧化物层50和(2)在牺牲注入氧化物蚀刻之前沉积的第二自对准牺牲O 3 TEOS氧化物层70。 本发明可以应用于各种情况,其中沟槽氧化物暴露于有害蚀刻。
    • 17. 发明授权
    • Shallow trench isolation method employing self-aligned and planarized
trench fill dielectric layer
    • 采用自对准和平面化沟槽填充介质层的浅沟槽隔离方法
    • US5702977A
    • 1997-12-30
    • US810390
    • 1997-03-03
    • Syun-Ming JangYing-Ho ChenChen-Hua Yu
    • Syun-Ming JangYing-Ho ChenChen-Hua Yu
    • H01L21/762H01L21/76
    • H01L21/76224Y10S148/05
    • A method for forming within a trench within a substrate within an integrated circuit a planarized trench fill layer. There is first provided a substrate having a trench formed therein. There is formed upon the substrate at regions other than those within the trench a first integrated circuit layer which has a composition which inhibits formation upon the first integrated circuit layer of a trench fill layer which is subsequently formed upon the substrate and within the trench. There is also formed within the trench but not upon the substrate at regions other than those within the trench a second integrated circuit layer which has a composition which promotes formation within the trench of the trench fill layer which is subsequently formed upon the substrate and within the trench. Finally, there is formed upon the substrate and within the trench the trench fill layer. The trench fill layer is formed to a thickness over the trench such that when the trench fill layer is planarized through a chemical mechanical polish (CMP) planarizing method there is avoided formation of a dish within a planarized trench fill layer formed within the trench.
    • 一种在集成电路内的衬底内的沟槽内形成平坦化沟槽填充层的方法。 首先提供其中形成有沟槽的衬底。 在沟槽内的不同于沟槽内的区域的基底上形成第一集成电路层,该第一集成电路层具有阻止在沟槽填充层的第一集成电路层上形成的组成,后者形成在衬底上并在沟槽内。 在沟槽内还形成在衬底上的不在沟槽内的衬底上的第二集成电路层,该第二集成电路层具有促进在沟槽填充层的沟槽内形成的组成,其随后形成在衬底上并在衬底内 沟。 最后,在衬底上并在沟槽内形成沟槽填充层。 沟槽填充层形成为在沟槽上方的厚度,使得当沟槽填充层通过化学机械抛光(CMP)平面化方法平坦化时,避免在形成在沟槽内的平坦化沟槽填充层内形成皿。
    • 18. 发明授权
    • Sacrificial etchback layer for improved spin-on-glass planarization
    • 牺牲回蚀层,用于改进旋涂玻璃平面化
    • US5631197A
    • 1997-05-20
    • US520595
    • 1995-08-30
    • Chen-Hua YuSyun-Ming JangLung ChenYuan-Chang Huang
    • Chen-Hua YuSyun-Ming JangLung ChenYuan-Chang Huang
    • H01L21/3105H01L21/465
    • H01L21/31053
    • A method for forming a sacrificial planarization layer over an SOG layer which provide a more planar final surface. A substrate is provided with a first insulating layer formed on its surface. A spin-on-glass (SOG) layer is formed over the first insulating layer. The SOG layer has a greater thickness towards the outer edge compared to the central area of the substrate. Next a sacrificial layer is formed over the SOG layer. The sacrificial layer, preferably formed of silicon oxide material, is formed so that the layer has a greater thickness towards the outside of the wafer than in the central area. Next, the sacrificial layer is etched away and portions of the SOG layer are etched. The etch rates of the sacrificial layer, the SOG layer and the first insulating layer are approximately equal so that the planar top SOG surface is transferred to the final top surface after the etch. The resulting surface is planar because the additional sacrificial layer thickness in the outside periphery compensated for the thinner SOG in on the periphery and the faster etch rate on the periphery.
    • 一种用于在SOG层上形成牺牲平坦化层的方法,其提供更平面的最终表面。 衬底上设有形成在其表面上的第一绝缘层。 在第一绝缘层上形成旋涂玻璃(SOG)层。 与衬底的中心区域相比,SOG层具有比外边缘更大的厚度。 接下来,在SOG层上形成牺牲层。 优选由氧化硅材料形成的牺牲层被形成为使得该层具有比在中心区域更大于晶片外部的厚度。 接下来,蚀刻掉牺牲层并蚀刻SOG层的部分。 牺牲层,SOG层和第一绝缘层的蚀刻速率大致相等,使得在蚀刻之后,平面顶部SOG表面被转移到最终的顶表面。 所得到的表面是平面的,因为在外围的额外牺牲层厚度补偿了周边较薄的SOG,并且外围蚀刻速率更快。
    • 19. 发明授权
    • Deposit-etch-deposit ozone/teos insulator layer method
    • 沉积蚀刻沉积臭氧/陶瓷绝缘体层法
    • US5599740A
    • 1997-02-04
    • US558491
    • 1995-11-16
    • Syun-Ming JangChen-Hua Yu
    • Syun-Ming JangChen-Hua Yu
    • H01L21/3105H01L21/768H01L21/283H01L21/302
    • H01L21/31053H01L21/76837
    • A method for forming a gap-filling and self-planarizing silicon oxide insulator spacer layer within a patterned integrated circuit layer. Formed upon a semiconductor substrate is a patterned integrated circuit layer which is structured with a titanium nitride upper-most layer. The patterned integrated circuit layer also has at least one lower-lying layer formed of a material having a growth rate with respect to ozone assisted Chemical Vapor Deposited (CVD) silicon oxide layers greater than the growth rate of ozone assisted Chemical Vapor Deposited (CVD) silicon oxide layers upon titanium nitride. Formed within and upon the patterned integrated circuit layer is a silicon oxide insulator spacer layer deposited through an ozone assisted Chemical Vapor Deposition (CVD) process. The silicon oxide insulator spacer layer is formed until the surface of the titanium nitride upper-most layer is passivated with the silicon oxide insulator spacer layer. The silicon oxide insulator spacer layer is then etched from the surface of the titanium nitride upper-most layer. Finally, additional portions of the silicon oxide insulator spacer layer are sequentially deposited and etched until the surface of the silicon oxide insulator spacer layer over the lower layer(s) of the patterned integrated circuit layer is planar with the upper surface of the titanium nitride upper-most layer of the patterned integrated circuit layer.
    • 在图案化集成电路层内形成间隙填充和自平坦化氧化硅绝缘体间隔层的方法。 形成在半导体衬底上的是由氮化钛最上层构成的图案化集成电路层。 图案化集成电路层还具有至少一个下层,其由具有大于臭氧辅助化学气相沉积(CVD)的生长速率的臭氧辅助化学气相沉积(CVD)氧化硅层的生长速率的材料形成。 氮化钛上的氧化硅层。 形成在图案化集成电路层内部和之上的是通过臭氧辅助化学气相沉积(CVD)工艺沉积的氧化硅绝缘体隔离层。 形成氧化硅绝缘体间隔层,直到氮化钛最上层的表面被氧化硅绝缘体隔离层钝化。 然后从氮化钛最上层的表面蚀刻氧化硅绝缘体隔离层。 最后,依次沉积和蚀刻氧化硅绝缘体间隔层的附加部分,直到图案化集成电路层的下层之上的氧化硅绝缘体隔离层的表面与氮化钛上部的上表面平面 最上层的图案化集成电路层。