会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明申请
    • Using Candidates Correlation Information During Computer Aided Diagnosis
    • 在计算机辅助诊断期间使用候选人相关信息
    • US20070280530A1
    • 2007-12-06
    • US11742781
    • 2007-05-01
    • Glenn FungBalaji KrishnapuramVolkan VuralR. Rao
    • Glenn FungBalaji KrishnapuramVolkan VuralR. Rao
    • G06K9/62
    • G06T7/0012G06K9/6269G06K9/6278
    • A method and system correlate candidate information and provide batch classification of a number of related candidates. The batch of candidates may be identified from a single data set. There may be internal correlations and/or differences among the candidates. The candidates may be classified taking into consideration the internal correlations and/or differences. The locations and descriptive features of a batch of candidates may be determined. In turn, the locations and/or descriptive features determined may used to enhance the accuracy of the classification of some or all of the candidates within the batch. In one embodiment, the single data set analyzed is associated with an internal image of patient and the distance between candidates is accounted for. Two different algorithms may each simultaneously classify all of the samples within a batch, one being based upon probabilistic analysis and the other upon a mathematical programming approach. Alternate algorithms may be used.
    • 一种方法和系统将候选信息相关联并提供一些相关候选者的批次分类。 可以从单个数据集中识别该批候选。 候选人之间可能存在内部相关性和/或差异。 候选人可以考虑内部相关性和/或差异进行分类。 可以确定一批候选人的位置和描述性特征。 反过来,所确定的位置和/或描述性特征可以用于提高批次内的一些或所有候选者的分类的准确性。 在一个实施例中,所分析的单个数据集与患者的内部图像相关联,并且考虑候选者之间的距离。 两种不同的算法可以各自同时对批次中的所有样本进行分类,一种基于概率分析,另一种基于数学规划方法。 可以使用替代算法。
    • 15. 发明申请
    • System and method for feature identification in digital images based on rule extraction
    • 基于规则提取的数字图像中特征识别的系统和方法
    • US20050286773A1
    • 2005-12-29
    • US11145886
    • 2005-06-06
    • Glenn FungSathyakama SandilyaR. Bharat Rao
    • Glenn FungSathyakama SandilyaR. Bharat Rao
    • G06K9/62G06K9/00
    • G06K9/6253G06K9/626G06K9/6269
    • A method for classifying features in a digital medical image includes providing a plurality of feature points in an N-dimensional space, wherein each feature point is a member of one of two sets, determining a classifying plane that separates feature points in a first of the two sets from feature points in a second of the two sets, transforming the classifying plane wherein a normal vector to said transformed classifying plane has positive coefficients and a feature domain for one or more feature points of one set is a unit hypercube in a transformed space having n axes, obtaining an upper bound along each of the n-axes of the unit hypercube, inversely transforming said upper bound to obtain a new rule containing one or more feature points of said one set, and removing the feature points contained by said new rule from said one set.
    • 一种用于对数字医学图像中的特征进行分类的方法包括在N维空间中提供多个特征点,其中每个特征点是两组中的一个的成员,确定分类平面, 在两组中的第二组中的特征点中的两组,变换分类平面,其中向所述变换的分类平面的法向量具有正系数,并且一组中的一个或多个特征点的特征域是变换空间中的单位超立方体 具有n个轴,获得沿着单位超立方体的每个n轴的上限,逆变换所述上限以获得包含所述一个集合的一个或多个特征点的新规则,以及移除由所述新立体包含的特征点 规则来自所述一套。
    • 16. 发明申请
    • System and method for a sparse kernel expansion for a bayes classifier
    • 用于Bayes分类器的稀疏内核扩展的系统和方法
    • US20050197980A1
    • 2005-09-08
    • US11049187
    • 2005-02-02
    • Murat DundarGlenn FungJinbo BiR. Rao
    • Murat DundarGlenn FungJinbo BiR. Rao
    • G06K9/62G06E1/00
    • G06K9/6256
    • A method and device having instructions for analyzing input data-space by learning classifiers include choosing a candidate subset from a predetermined training data-set that is used to analyze the input data-space. Candidates are temporarily added from the candidate subset to an expansion set to generate a new kernel space for the input data-space by predetermined repeated evaluations of leave-one-out errors for the candidates added to the expansion set. This is followed by removing the candidates temporarily added to the expansion set after the leave-one-out error evaluations are performed, and selecting the candidates to be permanently added to the expansion set based on the leave-one-out errors of the candidates temporarily added to the expansion set to determine the one or more classifiers.
    • 具有用于通过学习分类器分析输入数据空间的指令的方法和设备包括从用于分析输入数据空间的预定训练数据集中选择候选子集。 将候选者从候选子集临时添加到扩展集合,以通过对添加到扩展集合的候选者的一对一错误进行预先重复的评估来为输入数据空间生成新的内核空间。 之后,在执行一次性错误评估之后,删除临时添加到扩展集的候选者,并且基于临时的候选者的一次性错误选择要永久添加到扩展集的候选项 添加到扩展集以确定一个或多个分类器。
    • 19. 发明申请
    • Leveraging Public Health Data for Prediction and Prevention of Adverse Events
    • 利用公共卫生数据预测和预防不良事件
    • US20140095201A1
    • 2014-04-03
    • US14032522
    • 2013-09-20
    • Faisal FarooqBalaji KrishnapuramGlenn FungShipeng YuKaren Nielsen
    • Faisal FarooqBalaji KrishnapuramGlenn FungShipeng YuKaren Nielsen
    • G06F19/00
    • G16H50/30
    • An adverse event may be prevented by predicting the probability of a given patient to have or undergo the adverse event. The ability to predict the probability of the adverse event may be enhanced when a model is derived from public health data to categorize and propose values for medical record fields. The probability alone may prevent the adverse event by educating the patient or medical professional. The probability may be predicted at any time, such as upon entry of information for the patient, periodic analysis, or at the time of admission. The probability may be used to generate a workflow action item to reduce the probability, to warn, to output appropriate instructions, and/or assist in avoiding adverse event. The probability may be specific to a hospital, physician group, or other medical entity, allowing prevention to focus on past adverse event causes for the given entity.
    • 可以通过预测给定患者具有或经历不良事件的可能性来防止不良事件。 当模型从公共卫生数据导出以对医疗记录领域进行分类和建议值时,可以增强预测不良事件概率的能力。 单靠概率可以通过教育患者或医疗专业人员来预防不良事件。 可以随时预测概率,例如在输入患者信息,定期分析或入院时。 概率可以用于生成工作流动作项目以降低概率,警告输出适当的指令和/或协助避免不利事件。 医院,医师团体或其他医疗机构的概率可能是特定的,允许预防集中于给定实体的过去不良事件原因。