会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Projection image display device and projection optical system for performing extended projection
    • 用于执行扩展投影的投影图像显示装置和投影光学系统
    • US08292438B2
    • 2012-10-23
    • US12622471
    • 2009-11-20
    • Jun Nishikawa
    • Jun Nishikawa
    • G03B21/28G03B21/14
    • G03B5/04G02B17/0896G03B21/28H04N9/3105
    • A projection image display device includes a light source; an illumination optical system that uniformly irradiates a surface of an image modulating element (primary image surface) with a light beam emitted from the light source; and a projection optical system that performs with respect to a screen (a secondary image surface) extended projection on image information provided at the primary image surface and modulated by the image modulating element. The projection optical system includes a first optical system having a positive refractive power, and a second optical system having a concave reflecting surface. The first optical system has a common optical axis at which all optical components of the first optical system have rotationally symmetric surfaces, and a screen shift function that causes the secondary image surface to be moved by moving at least one of the optical components of the first optical system substantially perpendicularly to the optical axis.
    • 投影图像显示装置包括光源; 照明光学系统,其利用从光源发射的光束均匀地照射图像调制元件(原始图像表面)的表面; 以及投影光学系统,其相对于在主图像表面上提供并由图像调制元件调制的图像信息上的屏幕(次级图像表面)延伸投影执行。 投影光学系统包括具有正折光力的第一光学系统和具有凹面反射面的第二光学系统。 第一光学系统具有共同的光轴,在该公共光轴处,第一光学系统的所有光学部件具有旋转对称的表面,以及通过移动第二光学部件的光学部件中的至少一个来使第二图像表面移动的屏幕移动功能 光学系统基本上垂直于光轴。
    • 12. 发明授权
    • Projection optical system and projection-type image display apparatus
    • 投影光学系统和投影型图像显示装置
    • US08217374B2
    • 2012-07-10
    • US10583607
    • 2005-10-21
    • Jun NishikawaToshihiro Sunaga
    • Jun NishikawaToshihiro Sunaga
    • G01G1/00
    • G03B21/10G02B17/08G02B17/0816G02B17/0852G03B21/28
    • There is a need for providing a projection optical system that is appropriate for maintaining high resolution with low distortion, miniaturizing a reflector, decreasing the number of reflectors, and decreasing the depth and the bottom (or top) of a display used for a rear projection television, for example. The projection optical system according to the invention enlarges and projects images from a primary image surface existing at a reducing side to a secondary image surface existing at an enlarging side. The projection optical system has a first optical system L11 and a second optical system L12. The first optical system L11 forms an intermediate image (position II) of the primary image surface. The second optical system L12 has a concave reflector AM1 that forms the secondary image surface resulting from the intermediate image. A light beam travels from the center of the primary image surface and to the center of the secondary image surface and crosses an optical axis. The light beam is reflected on the concave reflector, crosses the optical axis again, and reaches the secondary image surface.
    • 需要提供一种投影光学系统,其适合于维持低失真的高分辨率,反射器的小型化,减少反射器的数量,以及减小用于后投影的显示器的深度和底部(或顶部) 电视,例如。 根据本发明的投影光学系统将存在于还原侧的原图像表面的图像放大并投影到存在于放大侧的二次图像表面。 投影光学系统具有第一光学系统L11和第二光学系统L12。 第一光学系统L11形成主图像表面的中间图像(位置II)。 第二光学系统L12具有形成由中间图像产生的二次图像表面的凹面反射体AM1。 光束从主图像表面的中心移动到次级图像表面的中心并与光轴交叉。 光束在凹面反射体上反射,再次与光轴交叉,到达二次图像面。
    • 15. 发明申请
    • Pattern Forming Apparatus and Pattern Forming Method
    • 图案形成装置和图案形成方法
    • US20070237891A1
    • 2007-10-11
    • US11696746
    • 2007-04-05
    • Yoshinori SugiuraJun NishikawaRyoichi NakaokaChika KanadaAkito Harada
    • Yoshinori SugiuraJun NishikawaRyoichi NakaokaChika KanadaAkito Harada
    • B05D5/12H01F1/00B05C11/02
    • B05D5/06B05D3/207H01F1/28H01F7/0215H01F13/00
    • A pattern is formed by applying a coating composition containing magnetic particles to an article so that a coating film is formed, and a plurality of sheet form magnets are placed along the front surface of this coating film. Adjacent sheet form magnets are arranged in such a state that the magnetic poles on the front surface and the magnetic poles on the back surface are different between adjacent sheet form magnets, and side surfaces of the sheet form magnets contact each other. The coating composition contains a thermoplastic resin, magnetic particles with flaky form and a specific low boiling point solvent and a specific high boiling point solvent. A magnetic field is applied to the coating film by the sheet form magnets, so that the magnetic particles in the coating film are oriented by the magnetic field and the magnetic particles are oriented substantially parallel to the front surface of the coating film above the contact portions between the sheet form magnets. Light is reflected from the magnetic particles in the coating film so that a pattern is formed.
    • 通过将含有磁性颗粒的涂料组合物涂布到制品上形成涂膜,沿着该涂膜的前表面放置多个片状磁体,形成图案。 相邻的片状磁体以相邻的片状磁体之间的前表面上的磁极和背面的磁极与磁极之间不同的状态配置,片状磁体的侧面彼此接触。 涂料组合物含有热塑性树脂,片状磁性颗粒和特定的低沸点溶剂和特定的高沸点溶剂。 通过片状磁体对涂膜施加磁场,使得涂膜中的磁性颗粒通过磁场取向,并且磁性颗粒基本平行于涂层膜的接触部分上方的前表面 在片状磁体之间。 光从涂膜中的磁性颗粒反射,形成图案。
    • 16. 发明授权
    • Zoom lens system
    • 变焦镜头系统
    • US06785055B2
    • 2004-08-31
    • US10147016
    • 2002-05-16
    • Jun NishikawaTomoko Nakagawa
    • Jun NishikawaTomoko Nakagawa
    • G02B1514
    • G02B15/177
    • A zoom lens system has, in order from an enlargement side, a first lens unit having negative optical power, a second lens unit having positive optical power, a third lens unit having positive optical power, a fourth lens unit having negative optical power, including an aperture stop, a fifth lens unit having positive or negative optical power, and a sixth lens unit having positive optical power. Zooming is achieved by varying the first to fifth variable distances between the lens units. The third and fifth lens units move from the enlargement side to the reduction side during zooming from the telephoto end to the wide-angle end. The zoom lens system is substantially telecentric toward the reduction side.
    • 变焦透镜系统从放大侧依次具有具有负光焦度的第一透镜单元,具有正光焦度的第二透镜单元,具有正光焦度的第三透镜单元,具有负光焦度的第四透镜单元,包括 孔径光阑,具有正或负光焦度的第五透镜单元和具有正光焦度的第六透镜单元。 通过改变透镜单元之间的第一至第五可变距离来实现变焦。 第三和第五透镜单元在从望远端到广角端的变焦期间从放大侧移动到缩小侧。 变焦透镜系统基本上朝向减速侧的远心。
    • 18. 发明授权
    • Projection optical apparatus
    • 投影光学仪器
    • US06382799B1
    • 2002-05-07
    • US09621157
    • 2000-07-21
    • Jun NishikawaShigeru SawamuraKatsuhiro Takamoto
    • Jun NishikawaShigeru SawamuraKatsuhiro Takamoto
    • G03B2114
    • G03B21/008G03B21/142G03B21/2066
    • A projection optical apparatus has a light source for emitting light, an illumination optical system for emitting as illumination light the light radiated from the light source, a Digital Micromirror Device™, having a plurality of micromirrors, for separating the illumination light into signal light and unnecessary light by varying, in accordance with a signal, the angles at which the individual micromirrors reflect the illumination light shone thereon, a total internal reflection prism composed of a first prism for totally reflecting and thereby directing the illumination light exiting from the illumination optical system to the Digital Micromirror Device™ and a second prism for transmitting the signal light reflected from the Digital Micromirror Device™, and a projection optical system for projecting the signal light transmitted through the second prism onto a projection surface. Here, the f/number Fa of the illumination optical system on the Digital Micromirror Device™ side thereof, the distance xa from the Digital Micromirror Device™ to the Digital Micromirror Device™ side pupil of the illumination optical system, the distance L from the optical axis position of the Digital Micromirror Device™ to the most off-axial position thereof, and the rotation &thgr;D angle of the micromirrors constituting the Digital Micromirror Device™ fulfill the following condition, assuming that Fa falls within a range 1/{2 sin(0.85 &thgr;D)}≦Fa≦1/{2 sin(0.3 &thgr;D)}: L/[tan{&thgr;D−sin−1(1/(2·Fa))}]≦xa≦L/tan(&thgr;D−0.87 &thgr;D)
    • 投影光学装置具有用于发光的光源,用于从光源照射光的照明光学系统,具有多个微镜的数字微镜装置(TM),用于将照明光分离成信号 通过根据信号改变各个微镜反射照明光的角度,由第一棱镜组成的全内反射棱镜,用于全反射,从而引导从照明出射的照明光, 数字微镜器件TM的光学系统和用于传输从数字微镜器件TM反射的信号光的第二棱镜,以及用于将透过第二棱镜的信号光投影到投影表面上的投影光学系统。 这里,数字微镜装置(TM)侧的照明光学系统的f /数值Fa,照明光学系统的数字微镜装置(TM)到数字微镜装置(TM)侧光瞳的距离xa, 从数字微镜装置(TM)的光轴位置到最离轴位置的距离L以及构成数字微镜装置(TM)的微反射镜的旋转角度达到以下条件,假设Fa下降 在1 / {2sin(0.85θD)}的范围内<= Fa <= 1 / {2sin(0.3θD)}:
    • 19. 发明授权
    • Electronic device and method for manufacturing the same
    • 电子设备及其制造方法
    • US08894836B2
    • 2014-11-25
    • US13443932
    • 2012-04-11
    • Hiroshi KatsubeJun Nishikawa
    • Hiroshi KatsubeJun Nishikawa
    • C25D5/50H01G4/30H01G4/232
    • H01G4/30H01G4/2325Y10T428/31678
    • A highly reliable electronic device that prevents entry of a plating solution via an external electrode and entry of moisture of external environment inside thereof, and generates no soldering defects or solder popping defects which are caused by precipitation of a glass component on a surface of the external electrode. The electrode structure of the electronic device is formed of Cu-baked electrode layers primarily composed of Cu, Cu plating layers formed on the Cu-baked electrode layers and which are processed by a recrystallization treatment, and upper-side plating layers formed on the Cu plating layers. After the Cu plating layers are formed, a heat treatment is performed at a temperature in the range of a temperature at which the Cu plating layers are recrystallized to a temperature at which glass contained in a conductive paste is not softened, so that the Cu plating layers are recrystallized.
    • 一种高度可靠的电子装置,其防止电镀溶液经由外部电极进入,并且在其内部进入外部环境的水分,并且不产生由外部表面上的玻璃成分的沉淀引起的焊接缺陷或焊料缺陷缺陷 电极。 电子器件的电极结构由主要由在Cu烧结电极层上形成的Cu,Cu镀层构成的Cu焙烧电极层形成,并通过重结晶处理进行处理,并且在Cu上形成的上侧镀层 电镀层。 在形成Cu镀层之后,在Cu镀层重结晶的温度范围内的温度到导电浆料中所含的玻璃不软化的温度下进行热处理,使得镀铜 层重结晶。
    • 20. 发明授权
    • Electronic device and method for manufacturing the same
    • 电子设备及其制造方法
    • US08179660B2
    • 2012-05-15
    • US11935854
    • 2007-11-06
    • Hiroshi KatsubeJun Nishikawa
    • Hiroshi KatsubeJun Nishikawa
    • H01G4/00
    • H01G4/30H01G4/2325Y10T428/31678
    • A highly reliable electronic device that prevents entry of a plating solution via an external electrode and entry of moisture of external environment inside thereof, and generates no soldering defects or solder popping defects which are caused by precipitation of a glass component on a surface of the external electrode. The electrode structure of the electronic device is formed of Cu-baked electrode layers primarily composed of Cu, Cu plating layers formed on the Cu-baked electrode layers and which are processed by a recrystallization treatment, and upper-side plating layers formed on the Cu plating layers. After the Cu plating layers are formed, a heat treatment is performed at a temperature in the range of a temperature at which the Cu plating layers are recrystallized to a temperature at which glass contained in a conductive paste is not softened, so that the Cu plating layers are recrystallized.
    • 一种高度可靠的电子装置,其防止电镀溶液经由外部电极进入,并且在其内部进入外部环境的水分,并且不产生由外部表面上的玻璃成分的沉淀引起的焊接缺陷或焊料缺陷缺陷 电极。 电子器件的电极结构由主要由在Cu烧结电极层上形成的Cu,Cu镀层构成的Cu焙烧电极层形成,并通过重结晶处理进行处理,并且在Cu上形成的上侧镀层 电镀层。 在形成Cu镀层之后,在Cu镀层重结晶的温度到导电浆料中所含的玻璃不软化的温度的温度下进行热处理,使得镀铜 层重结晶。