会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 97. 发明授权
    • Robot controller
    • 机器人控制器
    • US06124693A
    • 2000-09-26
    • US350276
    • 1999-07-09
    • Koichi OkandaTakeaki Aramaki
    • Koichi OkandaTakeaki Aramaki
    • B25J9/10B25J9/22G05B19/408G05B19/423B25J9/18
    • G05B19/425G05B19/4086G05B19/423G05B2219/39134G05B2219/39137G05B2219/45104
    • Axes used for posture alignment are selected from the axes of a work coordinate system W and a tool coordinate system T, and an angle of intersection between those selected axes are set. A robot is then driven so that the selected axes intersect with each other by the set angle of intersection in response to a posture alignment instruction, causing the tool to assume a target posture with respect to a workpiece. Further, angles for rotating the work coordinate system about each axis thereof are set, then the robot is automatically moved so that a coordinate system produced by rotating the work coordinate system by the set angle in response to a posture alignment instruction. Further, the tool coordinate system set at a movable part of a tool is automatically reset according to an amount of movement every time the movable part of the tool move, and the robot is manually fed based on the tool coordinate system thus reset.
    • 从工件坐标系W和工具坐标系T的轴中选择用于姿势对准的轴,并设定这些选定轴之间的交点。 然后驱动机器人,使得所选择的轴响应于姿势对准指令而相交于设定的交叉角,使得工具相对于工件呈现目标姿态。 此外,设置用于围绕其各轴旋转工件坐标系的角度,然后机器人自动移动,使得通过响应于姿势对准指令使工件坐标系旋转设定角度而产生的坐标系。 此外,设置在工具的可动部的工具坐标系,每当刀具的可移动部移动时,根据移动量自动复位,并且基于刀具坐标系手动进给机器人,从而复位。
    • 100. 发明授权
    • Lead-through robot programming system
    • 直通机器人编程系统
    • US5495410A
    • 1996-02-27
    • US289898
    • 1994-08-12
    • Timothy L. Graf
    • Timothy L. Graf
    • B25J9/10B25J9/16B25J9/18B25J9/22B25J13/00G05B19/4069G05B19/42G05B19/423G05B19/18
    • B25J9/1671G05B19/423G05B2219/39198G05B2219/40403G05B2219/45058G05B2219/45151
    • A lead-through robot programming system for programming a robot to drive an end effector through a series of desired path points along a desired path with respect to a workstation. The system includes a six DOF digitizing arm having a working end, an end effector model mounted to the working end, a workstation model, and a programming computer system. A user manipulates the working end to move the end effector model through a model path with respect to the workstation model. At selected model path points, the digitizing arm generates model path point data representing the position and orientation of the end effector model with respect to the workstation model. The programming computer system includes a video monitor, a user interface, and memory for storing data including the model path point data, robot simulation and motion program generation software, and models of the robot, workstation and end effector. The simulation and motion program generation software is run as a function of the model path point data to generate motion-control program segments that direct the robot to drive the end effector through the desired path. The simulation and motion program generation software also generates graphic images of 0the robot driving the end effector through the desired path. Interactively controlling the simulation and motion program generation software through the interface, and using visual feedback provided by the monitor, the user performs collision and out-of-range checking and singularity point identification, and optimizes the motion-control program segments.
    • 一种直通机器人编程系统,用于对机器人进行编程,以通过沿着相对于工作站的期望路径的一系列期望的路径点来驱动末端执行器。 该系统包括具有工作端的六自由度数字化臂,安装到工作端的端部执行器模型,工作站模型和编程计算机系统。 用户操纵工作端以通过相对于工作站模型的模型路径移动末端执行器模型。 在选定的模型路径点,数字化臂产生代表端部执行器模型相对于工作站模型的位置和方位的模型路径点数据。 编程计算机系统包括视频监视器,用户界面和用于存储包括模型路径点数据,机器人仿真和运动程序生成软件以及机器人,工作站和末端执行器的模型的数据的存储器。 模拟和运动程序生成软件作为模型路径点数据的函数运行,以生成引导机器人通过所需路径驱动末端执行器的运动控制程序段。 仿真和运动程序生成软件还生成图形图像,该机器人通过期望的路径驱动末端执行器。 通过界面交互控制仿真和运动程序生成软件,并使用监视器提供的视觉反馈,用户执行碰撞和超出范围检查和奇异点识别,并优化运动控制程序段。