会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 91. 发明授权
    • Iridium composite barrier structure and method for same
    • 铱复合阻挡结构及方法相同
    • US06479304B1
    • 2002-11-12
    • US09717993
    • 2000-11-21
    • Fengyan ZhangJer-shen MaaSheng Teng Hsu
    • Fengyan ZhangJer-shen MaaSheng Teng Hsu
    • H01L2100
    • H01L28/75H01L21/28291H01L28/55H01L29/516
    • An Ir combination film has been provided that is useful in forming an electrode of a ferroelectric capacitor. The combination film includes tantalum and oxygen, as well as iridium. The Ir combination film effectively prevents oxygen diffusion, and is resistant to high temperature annealing in oxygen environments. When used with an underlying Ta or TaN layer, the resulting conductive barrier also suppresses to diffusion of Ir into any underlying Si substrates. As a result, Ir silicide products are not formed, which degrade the electrode interface characteristics. That is, the Ir combination film remains conductive, not peeling or forming hillocks, during high temperature annealing processes, even in oxygen. A method for forming an Ir composite film barrier layer and Ir composite film ferroelectric electrode are also provided.
    • 已经提供了可用于形成铁电电容器的电极的Ir组合膜。 组合膜包括钽和氧,以及铱。 Ir组合膜有效防止氧气扩散,并且在氧气环境中耐高温退火。 当与下面的Ta或TaN层一起使用时,所得到的导电屏障还抑制Ir扩散到任何下面的Si衬底中。 结果,不形成铱硅化物产物,这降低了电极界面的特性。 也就是说,即使在氧气中,Ir组合膜在高温退火过程中仍保持导电性,不会剥离或形成小丘。 还提供了形成Ir复合膜阻挡层和Ir复合膜铁电电极的方法。
    • 93. 发明授权
    • Lead germanate ferroelectric structure with multi-layered electrode
    • 具有多层电极的锗酸铁锂结构
    • US06420740B1
    • 2002-07-16
    • US09317780
    • 1999-05-24
    • Fengyan ZhangTingkai LiSheng Teng Hsu
    • Fengyan ZhangTingkai LiSheng Teng Hsu
    • H01L2976
    • H01L28/56H01L21/31604H01L21/31691H01L28/75
    • The ferroelectric structure including a Pt/Ir layered electrode used in conjunction with a lead germanate (Pb5Ge3O11) thin film is provided. The electrode exhibits good adhesion to the substrate, and barrier properties resistant to oxygen and lead. Ferroelectric properties are improved, without detriment to the leakage current, by using a thin IrO2 layer formed in situ, during the MOCVD lead germanate (Pb5Ge3O11) thin film process. By using a Pt/Ir electrode, a relatively low MOCVD processing temperature is required to achieve c-axis oriented lead germanate (Pb5Ge3O11) thin film. The temperature range of MOCVD caxis oriented lead germanate (Pb5Ge3O11) thin film on top of Pt/Ir is 400-500° C. Further, a relatively large nucleation density is obtained, as compared to using single-layer iridium electrode. Therefore, the lead germanate (Pb5Ge3O11) thin film has a smooth surface, a homogeneous microstructure, and homogeneous ferroelectric properties. A method of forming the above-mentioned multi-layered electrode ferroelectric structure is also provided.
    • 提供了包括与锗酸铅(Pb5Ge3O11)薄膜结合使用的Pt / Ir层叠电极的铁电体结构。 该电极对基材表现出良好的粘合性,并且对氧和铅具有阻挡性能。 在MOCVD锗酸铅(Pb5Ge3O11)薄膜工艺中,通过使用在原位形成的薄的IrO 2层,铁电性能得到改善,而不损害漏电流。 通过使用Pt / Ir电极,需要相对低的MOCVD处理温度来实现c轴取向的锗酸铅(Pb5Ge3O11)薄膜。 Pt / Ir顶部的MOCVD caxis取向铅酸铅(Pb5Ge3O11)薄膜的温度范围为400-500℃。与使用单层铱电极相比,获得了较大的成核密度。 因此,锗酸铅(Pb5Ge3O11)薄膜表面光滑,微观组织均匀,铁电性能均匀。 还提供了形成上述多层电极铁电体结构体的方法。
    • 94. 发明授权
    • Composite iridium-metal-oxygen barrier structure with refractory metal companion barrier
    • 复合铱金属氧阻隔结构与难熔金属伴侣屏障
    • US06288420B1
    • 2001-09-11
    • US09703192
    • 2000-10-31
    • Fengyan ZhangSheng Teng HsuJer-shen MaaWei-Wei Zhuang
    • Fengyan ZhangSheng Teng HsuJer-shen MaaWei-Wei Zhuang
    • H01L2976
    • H01L28/75H01L21/28568H01L28/55
    • An Ir—M—O composite film has been provided that is useful in forming an electrode of a ferroelectric capacitor, where M includes a variety of refractory metals. The Ir combination film is resistant to high temperature annealing in oxygen environments. When used with an underlying barrier layer made from the same variety of M transition metals, the resulting conductive barrier also suppresses to diffusion of Ir into any underlying Si substrates. As a result, Ir silicide products are not formed, which degrade the electrode interface characteristics. That is, the Ir combination film remains conductive, not peeling or forming hillocks, during high temperature annealing processes, even in oxygen. The Ir—M—O conductive electrode/barrier structures are useful in nonvolatile FeRAM devices, DRAMs, capacitors, pyroelectric infrared sensors, optical displays, optical switches, piezoelectric transducers, and surface acoustic wave devices. A method for forming an Ir—M—O composite film barrier layer and an Ir—M—O composite film ferroelectric electrode are also provided.
    • 已经提供了可用于形成铁电电容器的电极的Ir-M-O复合膜,其中M包括各种难熔金属。 Ir组合膜在氧气环境中耐高温退火。 当与由相同种类的M过渡金属制成的底层阻挡层一起使用时,所得到的导电屏障还抑制Ir扩散到任何下面的Si衬底中。 结果,不形成铱硅化物产物,这降低了电极界面的特性。 也就是说,即使在氧气中,Ir组合膜在高温退火过程中仍保持导电性,不会剥离或形成小丘。 Ir-M-O导电电极/屏障结构可用于非易失性FeRAM器件,DRAM,电容器,热释电红外传感器,光学显示器,光开关,压电换能器和表面声波器件。 还提供了形成Ir-M-O复合膜阻挡层和Ir-M-O复合膜铁电电极的方法。
    • 95. 发明授权
    • Multi-phase lead germanate film deposition method
    • 多相锗酸铅成膜法
    • US06281022B1
    • 2001-08-28
    • US09704496
    • 2000-11-01
    • Tingkai LiFengyan ZhangSheng Teng Hsu
    • Tingkai LiFengyan ZhangSheng Teng Hsu
    • H01L2100
    • H01L21/31691C23C16/40C23C16/56H01L21/31604H01L28/55
    • A MOCVD deposition process has been provided for the deposition of an improved PGO ferroelectric film. The inclusion of a second phase of Pb3GeO5, along with the first phase of Pb5Ge3O11, provides the film with some ferroelastic properties which direct correspond to improved ferroelectric characteristics. The inclusion of the second phase regulates to first phase crystal grain size and promotes the preferred c-axis orientation of the grains. The degree of second phase Pb3GeO5 is regulated by controlling the amount of lead in the precursor, and with additional lead added to the reactor along the oxygen used to oxidize the lead-germanium film. Critical post-deposition annealing process are also described which optimize the ferroelectric properties of the PGO film. A multi-phase PGO film and capacitor structure including multi-phase PGO film of the present invention are provided by means of the invention.
    • 已经提供了用于沉积改进的PGO铁电体膜的MOCVD沉积工艺。 包含Pb3GeO5的第二相以及Pb5Ge3O11的第一相为膜提供一些直接对应于改进的铁电特性的铁弹性质。 第二相的包含调节到第一相晶粒尺寸并且促进晶粒的优选的c轴取向。 第二相Pb3GeO5的程度是通过控制前体中的铅的量来调节的,并且沿着用于氧化铅 - 锗膜的氧加入到反应器中的另外的铅被调节。 还描述了优化PGO膜的铁电性能的关键后沉积退火工艺。 本发明提供了包括本发明多相PGO膜的多相PGO膜和电容器结构。
    • 96. 发明授权
    • Method for anisotropic plasma etching using non-chlorofluorocarbon, fluorine-based chemistry
    • 使用非氯氟烃,氟基化学的各向异性等离子体蚀刻方法
    • US06350699B1
    • 2002-02-26
    • US09584407
    • 2000-05-30
    • Jer-shen MaaFengyan Zhang
    • Jer-shen MaaFengyan Zhang
    • H01L2100
    • H01L21/32136C23F4/00
    • A method of anisotropically etching metals, especially iridium, platinum, ruthenium, osmium, and rhenium using a non-chlorofluorocarbon, fluorine-based chemistry. A substrate having metal deposited thereon, is inserted into an ECR plasma etch chamber and heated. A fluorine containing gas, such as, carbon tetrafluoride (CF4), nitrogen trifluoride (NF3) or sulfur hexafluoride (SF6) is introduced into the chamber and ionized to form a plasma. Fluorine ions within the plasma strike, or contact, the metal to form volatile metal-fluorine compounds. The metal-fluorine compounds are exhausted away from the substrate to reduce, or eliminate, redeposition of etch reactants.
    • 使用非氯氟烃氟基化学物质各向异性蚀刻金属,特别是铱,铂,钌,锇和铼的方法。 将其上沉积有金属的衬底插入到ECR等离子体蚀刻室中并加热。 将四氟化碳(CF 4),三氟化氮(NF 3)或六氟化硫(SF 6)等含氟气体引入室内并离子化形成等离子体。 等离子体内的氟离子冲击,或接触金属,形成挥发性金属氟化合物。 金属 - 氟化合物从衬底排出,以减少或消除蚀刻反应物的再沉积。
    • 98. 发明申请
    • Nanotip electrode non-volatile memory resistor cell
    • 纳米电极非易失性存储电阻单元
    • US20070167008A1
    • 2007-07-19
    • US11717818
    • 2007-03-14
    • Sheng HsuFengyan ZhangGregory SteckerRobert Barrowcliff
    • Sheng HsuFengyan ZhangGregory SteckerRobert Barrowcliff
    • H01L21/44
    • H01L27/101H01L45/04H01L45/1233H01L45/1273H01L45/147H01L45/16H01L45/1675
    • A non-volatile memory resistor cell with a nanotip electrode, and corresponding fabrication method are provided. The method comprises: forming a first electrode with nanotips; forming a memory resistor material adjacent the nanotips; and, forming a second electrode adjacent the memory resistor material, where the memory resistor material is interposed between the first and second electrodes. Typically, the nanotips are iridium oxide (IrOx) and have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. In one aspect, the substrate material can be silicon, silicon oxide, silicon nitride, or a noble metal. A metalorganic chemical vapor deposition (MOCVD) process is used to deposit Ir. The IrOx nanotips are grown from the deposited Ir.
    • 提供了具有纳米尖端电极的非易失性存储器电阻单元及相应的制造方法。 该方法包括:形成具有纳米尖端的第一电极; 在所述纳米尖端附近形成记忆电阻材料; 并且形成与所述存储电阻材料相邻的第二电极,其中所述存储电阻材料置于所述第一和第二电极之间。 通常,纳米针是氧化铱(IrOx),并且具有约50纳米或更小的尖端基底尺寸,在5至50nm范围内的尖端高度,以及每平方微米大于100纳米尖端的纳米密度密度。 一方面,衬底材料可以是硅,氧化硅,氮化硅或贵金属。 使用金属有机化学气相沉积(MOCVD)工艺沉积Ir。 IrOx纳米尖端从沉积的Ir生长。
    • 99. 发明申请
    • Photovoltaic structure with a conductive nanowire array electrode
    • 具有导电纳米线阵列电极的光伏结构
    • US20070111368A1
    • 2007-05-17
    • US11280423
    • 2005-11-16
    • Fengyan ZhangRobert BarrowcliffSheng Hsu
    • Fengyan ZhangRobert BarrowcliffSheng Hsu
    • H01L51/40H01L21/00
    • H01L51/4213B82Y10/00H01L51/0046H01L51/0048H01L51/4226H01L51/4233H01L51/441Y02E10/52Y02E10/549
    • A photovoltaic (PV) structure is provided, along with a method for forming a PV structure with a conductive nanowire array electrode. The method comprises: forming a bottom electrode with conductive nanowires; forming a first semiconductor layer of a first dopant type (i.e., n-type) overlying the nanowires; forming a second semiconductor layer of a second dopant type, opposite of the first dopant type (i.e., p-type), overlying the first semiconductor layer; and, forming a top electrode overlying the second semiconductor layer. The first and second semiconductor layers can be a material such as a conductive polymer, a conjugated polymer with a fullerene derivative, and inorganic materials such as CdSe, CdS, Titania, or ZnO. The conductive nanowires can be a material such as IrO2, In2O3, SnO2, or indium tin oxide (ITO).
    • 提供光伏(PV)结构以及用于形成具有导电纳米线阵列电极的PV结构的方法。 该方法包括:形成具有导电纳米线的底电极; 形成覆盖在纳米线上的第一掺杂剂型(即n型)的第一半导体层; 形成与所述第一掺杂剂类型(即,p型)相反的第二掺杂剂类型的第二半导体层,所述第二掺杂剂类型覆盖所述第一半导体层; 以及形成覆盖所述第二半导体层的顶部电极。 第一和第二半导体层可以是诸如导电聚合物,具有富勒烯衍生物的共轭聚合物和诸如CdSe,CdS,二氧化钛或ZnO的无机材料的材料。 导电纳米线可以是诸如IrO 2,In 2 O 3,SnO 2,或铟的材料 氧化锡(ITO)。
    • 100. 发明申请
    • Silicon phosphor electroluminescence device with nanotip electrode
    • 具有纳米尖电极的硅荧光体电致发光器件
    • US20060180817A1
    • 2006-08-17
    • US11061946
    • 2005-02-17
    • Sheng HsuFengyan ZhangGregory SteckerRobert Barrowcliff
    • Sheng HsuFengyan ZhangGregory SteckerRobert Barrowcliff
    • H01L27/15
    • H05B33/145
    • An electroluminescence (EL) device and a method are provided for fabricating said device with a nanotip electrode. The method comprises: forming a bottom electrode with nanotips; forming a Si phosphor layer adjacent the nanotips; and, forming a transparent top electrode. The Si phosphor layer is interposed between the bottom and top electrodes. The nanotips may have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. Typically, the nanotips are formed from iridium oxide (IrOx) nanotips. A MOCVD process forms the Ir bottom electrode. The IrOx nanotips are grown from the Ir. In one aspect, the Si phosphor layer is a SRSO layer. In response to an SRSO annealing step, nanocrystalline SRSO is formed with nanocrystals having a size in the range of 1 to 10 nm.
    • 提供了一种电致发光(EL)器件和用于制造具有纳米尖端电极的所述器件的方法。 该方法包括:形成具有纳米尖端的底部电极; 在所述纳米尖端附近形成Si磷光体层; 并形成透明的顶部电极。 Si荧光体层介于底部和顶部电极之间。 纳米尖端可以具有约50纳米或更小的尖端基部尺寸,5至50nm范围内的尖端高度,以及每平方毫米大于100纳米尖端的纳米密度密度。 通常,纳米尖端由氧化铱(IrOx)纳米尖端形成。 MOCVD工艺形成Ir底部电极。 IrOx纳米尖嘴从Ir生长。 在一个方面,Si磷光体层是SRSO层。 响应于SRSO退火步骤,形成具有1至10nm范围内的尺寸的纳米晶体的纳米晶SRSO。