会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 91. 发明申请
    • Battery Management for an Implantable Medical Device
    • 可植入医疗器械的电池管理
    • US20130023943A1
    • 2013-01-24
    • US13489770
    • 2012-06-06
    • Jordi ParramonGoran N. MarnfeldtRobert OzawaEmanuel FeldmanDave Peterson
    • Jordi ParramonGoran N. MarnfeldtRobert OzawaEmanuel FeldmanDave PetersonYuping He
    • A61N1/36
    • A61N1/3787A61N1/08
    • Battery management circuitry for an implantable medical device such as an implantable neurostimulator is described. The circuitry has a T-shape with respect to the battery terminal, with charging circuitry coupled between rectifier circuitry and the battery terminal on one side of the T, and load isolation circuitry coupled between the load and the battery terminal on the other side. The load isolation circuitry can comprise two switches wired in parallel. An undervoltage fault condition opens both switches to isolate the battery terminal from the load to prevent further dissipation of the battery. Other fault conditions will open only one the switches leaving the other closed to allow for reduced power to the load to continue implant operations albeit at safer low-power levels. The battery management circuitry can be fixed in a particular location on an integrated circuit which also includes for example the stimulation circuitry for the electrodes.
    • 描述了诸如可植入神经刺激器的可植入医疗装置的电池管理电路。 电路相对于电池端子具有T形,充电电路耦合在整流器电路和T的一侧上的电池端子之间,负载隔离电路耦合在另一侧的负载和电池端子之间。 负载隔离电路可以包括并联的两个开关。 欠压故障条件打开两个开关以将电池端子与负载隔离,以防止电池进一步耗散。 其他故障条件将仅打开一个开关,使另一个闭合,以允许降低负载的功率,以继续进行种植体操作,尽管处于更安全的低功率水平。 电池管理电路可以固定在集成电路的特定位置,该集成电路还包括例如用于电极的刺激电路。
    • 94. 发明申请
    • Sample and Hold Circuitry for Monitoring Voltages in an Implantable Neurostimulator
    • 用于监测植入式神经刺激器中的电压的采样和保持电路
    • US20120092031A1
    • 2012-04-19
    • US13237172
    • 2011-09-20
    • Jess W. ShiEmanuel FeldmanJordi Parramon
    • Jess W. ShiEmanuel FeldmanJordi Parramon
    • G01R27/08A61N1/372
    • A61N1/36125A61B5/04001A61N1/025A61N1/08A61N1/378A61N1/3937
    • Sample and hold circuitry for monitoring electrodes and other voltages in an implantable neurostimulator is disclosed. The sample and hold circuitry in one embodiment contains multiplexers to selected appropriate voltages and to pass them to two storage capacitors during two different measurement phases. The capacitors are in a later stage serially connected to add the two voltages stored on the capacitors, and voltages present at the top and bottom of the serial connection are then input to a differential amplifier to compute their difference. The sample and hold circuitry is particularly useful in calculating the resistance between two electrodes, and is further particularly useful when resistance is measured using a biphasic pulse. The sample and hold circuitry is flexible, and can be used to measure other voltages of interest during biphasic or monophasic pulsing.
    • 公开了用于在可植入神经刺激器中监测电极和其它电压的采样和保持电路。 在一个实施例中,采样和保持电路包含多个选择的合适电压,并在两个不同的测量阶段期间将其传送到两个存储电容器。 电容器串联连接以增加存储在电容器上的两个电压,然后将存在于串行连接顶部和底部的电压输入到差分放大器以计算其差值。 采样和保持电路在计算两个电极之间的电阻时特别有用,当使用双相脉冲测量电阻时,采样和保持电路特别有用。 采样和保持电路是灵活的,并且可以用于在双相或单相脉冲期间测量感兴趣的其他电压。
    • 95. 发明授权
    • Methods and systems for improving the reliability of the time basis for data logged in an implantable medical device
    • 用于提高记录在可植入医疗设备中的数据的时间基准的可靠性的方法和系统
    • US08065019B2
    • 2011-11-22
    • US12272861
    • 2008-11-18
    • Goran N. MarnfeldtJordi Parramon
    • Goran N. MarnfeldtJordi Parramon
    • A61N1/00
    • A61N1/37252H04J3/0638
    • Disclosed are methods for synchronizing the time basis of logged data between an implantable medical device such as an IPG and an external device. The IPG logs various operational parameters as data and associates the same with a possibly-inaccurate IPG time stamp and a sequence number. Periodically, the external device sends accurate true time data to the IPG, which, like the operational parameter data, is logged with an IPG time stamp and a next sequence number. The IPG then orders the data sequences and timing sequences by time stamp in a combined data log, and divides that data log into regions in accordance with reset conditions apparent in the time stamp data. Slopes indicative of the relation between true time and time stamps are calculated for various regions on an intra-region or inter-region basis, which then allows for true time estimates to be calculated for the data sequences, thus providing an accurate time basis for the logged data. The true time estimates for the data sequences may then be transmitted from the IPG to an external device for interpretation.
    • 公开了用于在诸如IPG的可植入医疗设备和外部设备之间同步记录数据的时间基准的方法。 IPG将各种操作参数记录为数据,并将其与可能不准确的IPG时间戳和序列号相关联。 周期性地,外部设备向IPG发送准确的真实时间数据,其与操作参数数据一起记录IPG时间戳和下一个序列号。 IPG然后通过组合数据日志中的时间戳命令数据序列和定时序列,并根据时间戳数据中显而易见的复位条件将该数据记录划分为区域。 针对区域内或区域间的各个区域计算表示真实时间和时间戳之间的关系的斜率,然后允许为数据序列计算真实时间估计,从而为 记录数据。 然后可以将数据序列的真实时间估计从IPG发送到外部设备以进行解释。
    • 96. 发明申请
    • Efficient External Charger for Charging a Plurality of Implantable Medical Devices
    • 高效的外部充电器为多种植入式医疗设备充电
    • US20110121777A1
    • 2011-05-26
    • US12624162
    • 2009-11-23
    • Rafael CarbunaruJordi ParramonRobert OzawaJess ShiJoey ChenMd. Mizanur Rahman
    • Rafael CarbunaruJordi ParramonRobert OzawaJess ShiJoey ChenMd. Mizanur Rahman
    • H02J7/00
    • A61N1/3787A61N1/37223A61N1/37288
    • An improved external charger for a battery in an implantable medical device (implant), and technique for charging batteries in multiple implants using such improved external charger, is disclosed. During charging, values for a parameter measured in the implants are reported from the implants to the external charger. The external charger infers from the magnitudes of the parameters which of the implants has the highest and lowest coupling to the external charger, and so designates those implants as “hot” and “cold.” The intensity of the magnetic charging field is optimized for the cold implant consistent with the simulation to ensure that that the cold implant is charged with a maximum (fastest) battery charging current. The duty cycle of the magnetic charging field is also optimized for the hot implant consistent with the simulation to ensure that the hot implant does not exceed the power dissipation limit. As a result, charging is optimized to be fast for all of the implants, while still safe from a tissue heating perspective.
    • 公开了一种用于可植入医疗装置(植入物)中的电池的改进的外部充电器,以及使用这种改进的外部充电器为多个植入物中的电池充电的技术。 在充电期间,在植入物中测量的参数的值从植入物报告给外部充电器。 外部充电器从参数的大小推断出植入物中的哪一个具有与外部充电器最高和最低耦合的参数,因此将这些植入物称为“热”和“冷”。磁充电场的强度针对 冷植入物与模拟一致,以确保冷植入物充电最大(最快)的电池充电电流。 对于与模拟一致的热注入,磁充电场的占空比也被优化,以确保热植入物不超过功率耗散极限。 因此,对于所有植入物,充电被优化为快速,同时从组织加热的角度来看仍然是安全的。
    • 97. 发明申请
    • Current Generation Architecture for an Implantable Stimulator Device Having Coarse and Fine Current Control
    • 具有粗细电流控制的植入式刺激器装置的当前一代架构
    • US20100286749A1
    • 2010-11-11
    • US12838260
    • 2010-07-16
    • Jordi ParramonDavid K.L. PetersonPaul J. Griffith
    • Jordi ParramonDavid K.L. PetersonPaul J. Griffith
    • A61N1/36
    • A61N1/36125A61N1/0531A61N1/0534A61N1/0541A61N1/0543A61N1/0551A61N1/36071
    • Disclosed herein is a current generation architecture for an implantable stimulator device such as an Implantable Pulse Generator (IPG). Current source and sink circuitry are both divided into coarse and fine portions, which respectively can provide a coarse and fine current resolution to a specified electrode on the IPG. The coarse portion is distributed across all of the electrodes and so can source or sink current to any of the electrodes. The coarse portion is divided into a plurality of stages, each of which is capable via an associated switch bank of sourcing or sinking a coarse amount of current to or from any one of the electrodes on the device. The fine portion of the current generation circuit preferably includes source and sink circuitry dedicated to each of the electrode on the device, which can comprise digital-to-analog current converters (DACs). The DACs also receives the above-noted reference current, which is amplified by the DACs in fine increments by appropriate selection of fine current control signals. When the coarse and fine current control circuitry are used in tandem, ample current with a fine current resolution can be achieved at any electrode and in a space- and power-efficient manner.
    • 本文公开了用于植入式脉冲发生器(IPG)的植入式刺激器装置的当前一代架构。 电流源和接收电路都分为粗细部分,分别可以为IPG上的指定电极提供粗细和精细的电流分辨率。 粗糙部分分布在所有电极上,因此可以将电流吸收或吸收到任何电极。 粗略部分被分成多个级,每个级能够经由相关联的开关组,该器件对设备上的任何一个电极进行粗电流的吸收或吸收。 电流产生电路的优良部分优选地包括专用于器件上每个电极的源极和漏极电路,其可以包括数模转换器(DAC)。 DAC还接收上述参考电流,其通过适当选择精细电流控制信号以细微增量由DAC放大。 当粗调和精细电流控制电路串联使用时,可以在任何电极上以空间和功率有效的方式实现具有精细电流分辨率的充足电流。
    • 98. 发明申请
    • Low Power Loss Current Digital-to-Analog Converter Used in an Implantable Pulse Generator
    • 用于可植入脉冲发生器的低功耗电流数模转换器
    • US20090204174A1
    • 2009-08-13
    • US12424916
    • 2009-04-16
    • Jordi ParramonYuping HeKiran Nimmagadda
    • Jordi ParramonYuping HeKiran Nimmagadda
    • A61N1/36
    • A61N1/36071A61N1/025A61N1/36125A61N1/378
    • In one embodiment, the present invention provides an implantable stimulation device that includes output current sources and/or sinks configured to provide an output current for a load (i.e., tissue). The output path of the output current source or sink comprises a transistor which operates in a linear mode instead of a saturation mode. Because operation in a linear mode results in smaller drain-to-source voltage drops, power consumption in the output current source or sink (and hence in the implantable stimulator) is reduced, reducing battery or other power source requirements. Operation in the linear mode is facilitated in useful embodiments by a load in an input path (into which a reference current is sent) and a load in the output path (which bears the output current). The loads can be active transistors or passive resistors. A feedback circuit (e.g., an operational amplifier) receives voltages that build up across these loads, and sends a control signal to the gate of the transistor to ensure its linear operation.
    • 在一个实施例中,本发明提供了一种植入式刺激装置,其包括被配置为提供负载(即组织)的输出电流的输出电流源和/或接收器。 输出电流源或吸收器的输出路径包括以线性模式而不是饱和模式操作的晶体管。 因为在线性模式下的操作会导致较小的漏极 - 源极电压降,所以输出电流源或接收器(以及因此在可植入的刺激器中)的功耗降低,从而减少电池或其他电源要求。 在有用的实施例中,通过输入路径(发送参考电流)中的负载和输出路径(承担输出电流)中的负载来促进线性模式的操作。 负载可以是有源晶体管或无源电阻。 反馈电路(例如,运算放大器)接收跨越这些负载的电压,并将控制信号发送到晶体管的栅极,以确保其线性运行。
    • 99. 发明申请
    • TELEMETRY LISTENING WINDOW MANAGEMENT FOR AN IMPLANTABLE MEDICAL DEVICE
    • 远程医疗窗口管理用于可植入医疗设备
    • US20090018618A1
    • 2009-01-15
    • US11776170
    • 2007-07-11
    • Jordi ParramonJess W. Shi
    • Jordi ParramonJess W. Shi
    • A61N1/02
    • A61N1/37252A61N1/3605A61N1/37205Y10S128/903
    • An improved arbitration scheme for allowing concurrent stimulation and telemetry listening in a microstimulator is disclosed. A listening window for telemetry is permitted to proceed, and access to the microstimulator's coil granted, during at least a portion of the inter-pulse period that follows the issuance of a stimulation pulse. This is permissible because access to the coil is not needed during the entirety of the inter-pulse period. For example, the listening window can issue during that portion of the inter-pulse period when the decoupling capacitor is discharged, but cannot issue during that portion of the inter-pulse period when the compliance voltage is being generated for the next stimulation pulse. However, because compliance voltage generation occupies only a small portion of the inter-pulse period, the technique is not substantially limited. By allowing the listening window to issue during the majority of the inter-pulse period, the listening window produces smaller gaps between the pulses, and stimulation therapy is thus brought closer to its ideal.
    • 公开了一种用于允许微型激励器中的并发刺激和遥测监听的改进的仲裁方案。 在发出刺激脉冲之后的脉冲间期间的至少一部分期间,允许遥测监听窗口继续进行微型刺激器线圈的访问。 这是允许的,因为在整个脉冲间期间不需要对线圈的访问。 例如,当解耦电容器放电时,在脉冲周期的该部分期间可以发出监听窗口,但是当为下一个刺激脉冲产生顺从性电压时,不能在脉冲间期间的那部分期间发出监听窗口。 然而,由于顺应性电压产生仅占脉冲周期的一小部分,所以该技术基本上不受限制。 通过允许在大多数脉冲间期间发出听音窗口,收听窗口在脉冲之间产生较小的间隙,因此刺激疗法更接近其理想。