会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Methods of rendering vascular morphology in MRI with multiple contrast acquisition for black-blood angiography
    • 在血管造影术中进行血管造影的方法,采用多重对比采集进行黑血管造影
    • US06397096B1
    • 2002-05-28
    • US09540341
    • 2000-03-31
    • Kecheng LiuPaul M. MargosianJian Lin
    • Kecheng LiuPaul M. MargosianJian Lin
    • A61B5055
    • G01R33/563G01R33/5608G01R33/5617
    • A black blood magnetic resonance angiogram is produced by exciting dipoles (52) and repeatedly inverting the resonance (541, 542, . . . ) to produce a series of magnetic resonance echoes (561, 562, . . . ). Early echoes (e.g., (561, . . . , 568)) are more heavily proton density weighted than later echoes (e.g., (569, . . . , 5616)), which are more heavily T2 weighted. The magnetic resonance echoes are received and demodulated (38) into a series of data lines. The data lines are sorted (60) between the more heavily proton density weighted data lines and T2 weighted data lines which are reconstructed into a proton density weighted image representation and a T2 weighted image representation. The proton density weighted and T2 weighted image representations are combined (90) to emphasize the black blood from the T2 weighted images and the static tissue from the proton density weighted image. The combination processor (90) scales (92) the PDW and T2W images to a common maximum intensity level. The PDW and T2W image representations are then combined, e.g. averaged, together (94) to form a combined or averaged image. An edge image (96) is computed from the T2W image and a threshold mask (98) is applied. The edge image (96) is combined (100) with the combined image (94) to form an edge enhanced image. Optionally, a minimum projection intensity algorithm (102) is applied to the enhanced image. Preferably, the enhanced image is a black blood magnetic resonance angiogram with emphasized blood vessel edges.
    • 通过激发偶极子(52)并重复地反转谐振(541,542 ...)来产生黑色血液磁共振血管造影图,以产生一系列磁共振回波(561,562 ......)。 早期的回波(例如,(561,...,568))比后来的回波(例如,(569,...,5616))加权的质子密度更重,T2加权更重。 磁共振回波被接收和解调(38)成一系列数据线。 数据线在重质子密度加权数据线和被重建为质子密度加权图像表示和T2加权图像表示的T2加权数据线之间被排序(60)。 将质子密度加权和T2加权图像表示组合(90)以强调来自T2加权图像的黑血和来自质子密度加权图像的静态组织。 组合处理器(90)将PDW和T2W图像缩放(92)到共同的最大强度水平。 然后组合PDW和T2W图像表示。 平均,一起(94)以形成组合或平均图像。 从T2W图像计算边缘图像(96),并应用阈值掩码(98)。 边缘图像(96)与组合图像(94)组合(100)以形成边缘增强图像。 可选地,将最小投影强度算法(102)应用于增强图像。 优选地,增强图像是具有强调的血管边缘的黑色血液磁共振血管造影。
    • 2. 发明授权
    • Multiple contrast FSE approach to black blood angiography with redundant and supplementary vascular information
    • 多重对比FSE方法进行黑血管造影与冗余和补充血管信息
    • US06340887B1
    • 2002-01-22
    • US09400228
    • 1999-09-21
    • Kecheng LiuJian LinPaul M. Margosian
    • Kecheng LiuJian LinPaul M. Margosian
    • G01V300
    • G01R33/563G01R33/5608G01R33/5617
    • A black blood magnetic resonance angiogram is produced by exciting dipoles (52) and repeatedly inverting the resonance (541, 542, . . . ) to produce a series of magnetic resonance echoes (561, 562, . . . ). Early echoes (e.g., (561, . . . , 568)) are more heavily proton density weighted than later echoes (e.g., (569, . . . , 5616)) which are more heavily T2 weighted. The magnetic resonance echoes are received and demodulated (38) into a series of data lines. The data lines are sorted (60) between the more heavily proton density weighted data lines and T2 weighted data lines which are reconstructed into a proton density weighted image representation and a T2 weighted image representation. The proton density weighted and T2 weighted image representations are combined (90) to emphasize the black blood from the T2 weighted images and the static tissue from the proton density weighted image. The combined image is a black blood magnetic resonance angiogram. The production of the angiogram is time efficient and displays enhanced vessel depiction.
    • 通过激发偶极子(52)并重复地反转谐振(541,542 ...)来产生黑色血液磁共振血管造影图,以产生一系列磁共振回波(561,562 ......)。 早期的回波(例如,(561,...,568))比重于T2加权的后期回波(例如(569,...,5616))更重的质子密度。 磁共振回波被接收和解调(38)成一系列数据线。 数据线在重质子密度加权数据线和被重建为质子密度加权图像表示和T2加权图像表示的T2加权数据线之间被排序(60)。 将质子密度加权和T2加权图像表示组合(90)以强调来自T2加权图像的黑血和来自质子密度加权图像的静态组织。 组合的图像是黑色血液磁共振血管造影。 血管造影术的生产是时间有效的并显示增强的血管描述。
    • 3. 发明授权
    • Diagnostic imaging systems and methods employing temporally resolved intensity tracing
    • 诊断成像系统和采用时间分辨强度追踪的方法
    • US06505064B1
    • 2003-01-07
    • US09644034
    • 2000-08-22
    • Kecheng LiuPaul M. Margosian
    • Kecheng LiuPaul M. Margosian
    • A61B5055
    • G06T11/206
    • A diagnostic imaging system (100, 200) and method generates a plurality of temporally resolved volume image representations (130, 132, . . . , 134). A time course projection processor (140, 240) temporally collapses the volume image representations. A spatial projection processor (146, 246) performs a maximum or minimum intensity process along rays through voxels of a three-dimensional image representation. By sequentially temporally collapsing and maximum or minimum intensity projecting, in either order, the plurality of temporally resolved volume image representations is reduced to a two-dimensional temporally collapsed and spatially projected image representation (148, 248). In preferred embodiments, the present invention is directed to angiography, and more preferably to magnetic resonance angiography. In certain embodiments, time course information, such as blood flow rate information, vessel wall dynamics, contrast agent propagation, contrast agent peak arrival time, and the like, is logged in a database (142), providing additional diagnostic information or timing information for future reference. In this manner, more accurate images of vessel lumina, as well as blood flow time variant effects, are obtained.
    • 诊断成像系统(100,200)和方法产生多个时间分辨的体积图像表示(130,132,...,134)。 时间投影处理器(140,240)在时间上折叠卷图像表示。 空间投影处理器(146,246)通过三维图像表示的体素沿着光线执行最大或最小强度处理。 通过顺序地时间折叠和最大或最小强度投影,以任何顺序,多个时间分辨的体积图像表示被减少到二维时间折叠和空间投影的图像表示(148,248)。 在优选实施例中,本发明涉及血管造影术,更优选磁共振血管造影术。 在某些实施例中,在数据库(142)中记录诸如血液流量信息,血管壁动力学,造影剂传播,造影剂峰值到达时间等的时间过程信息,提供附加诊断信息或定时信息 以后的参考。 以这种方式,获得血管腔的更准确的图像,以及血流时间变化效应。
    • 4. 发明授权
    • Relaxometry quantification self-justification fitting
    • 放松测定量化自适应拟合
    • US08717023B2
    • 2014-05-06
    • US13236795
    • 2011-09-20
    • Mark GriswoldDan MaKecheng Liu
    • Mark GriswoldDan MaKecheng Liu
    • G01V3/00
    • G01R33/448G01R33/50G01R33/56341
    • Apparatus, methods, and other embodiments associated with self-justification fitting for magnetic resonance imaging (MRI) relaxation parameter quantification are described. One example nuclear magnetic resonance (NMR) apparatus includes a self-justification fitting logic configured to selectively include and exclude data points from a set of data points associated with NMR signals based, at least in part, on their impact on a fit attribute (e.g., standard deviation). In one embodiment, the self-justification is configured to select a subset of data points from the set of data points as a function of values for a fit attribute computed from fitting at least two different subsets of data points from the set of data points to a known NMR signal evolution.
    • 描述了与用于磁共振成像(MRI)松弛参数定量的自适应装置相关联的装置,方法和其它实施例。 一个例子,核磁共振(NMR)装置包括自对准拟合逻辑,其被配置为至少部分地基于它们对拟合属性的影响(例如,对于核心)来选择性地包括和排除与NMR信号相关联的一组数据点的数据点。 ,标准偏差)。 在一个实施例中,自适应被配置为根据从至少两个不同子集的数据点从数据点集合到数据点拟合的拟合属性的值来从数据点集合中选择数据点的子集, 已知的NMR信号进化。
    • 5. 发明申请
    • RELAXOMETRY QUANTIFICATION SELF-JUSTIFICATION FITTING
    • 放大自动量化自动配准
    • US20120268123A1
    • 2012-10-25
    • US13236795
    • 2011-09-20
    • Mark GriswoldDan MaKecheng Liu
    • Mark GriswoldDan MaKecheng Liu
    • G01R33/44
    • G01R33/448G01R33/50G01R33/56341
    • Apparatus, methods, and other embodiments associated with self-justification fitting for magnetic resonance imaging (MRI) relaxation parameter quantification are described. One example nuclear magnetic resonance (NMR) apparatus includes a self-justification fitting logic configured to selectively include and exclude data points from a set of data points associated with NMR signals based, at least in part, on their impact on a fit attribute (e.g., standard deviation). In one embodiment, the self-justification is configured to select a subset of data points from the set of data points as a function of values for a fit attribute computed from fitting at least two different subsets of data points from the set of data points to a known NMR signal evolution.
    • 描述了与用于磁共振成像(MRI)松弛参数定量的自适应装置相关联的装置,方法和其它实施例。 一个例子,核磁共振(NMR)装置包括自对准拟合逻辑,其被配置为至少部分地基于它们对拟合属性的影响(例如,对于核心)来选择性地包括和排除与NMR信号相关联的一组数据点的数据点。 ,标准偏差)。 在一个实施例中,自适应被配置为根据从至少两个不同子集的数据点从数据点集合到数据点拟合的拟合属性的值来从数据点集合中选择数据点的子集, 已知的NMR信号进化。
    • 6. 发明授权
    • Image segmentation of embedded shapes using constrained morphing
    • 使用约束变形的嵌入形状的图像分割
    • US06813373B1
    • 2004-11-02
    • US09825028
    • 2001-04-03
    • Jasjit S. SuriKecheng LiuLaura M. Reden
    • Jasjit S. SuriKecheng LiuLaura M. Reden
    • G06K300
    • G06T5/002G06K9/00201G06T5/30G06T7/155G06T2207/10088G06T2207/20161G06T2207/20192G06T2207/30016G06T2207/30028
    • An imaging system and method enables 3-D direct segmentation from a series of spatially offset 2-D image slices in a volume scan. The algorithm first smoothes and preserves the interface edges of the image volume using Bottom-Hat gray scale morphological transform followed by 3-D segmentation using fast 3-D level sets by preserving topology constraints, for example, cortical thickness in a brain volume. The method inputs opposite polarity spheres (contracting and expanding spheres) which morph into shapes within the volume using a surface propagation technique. The speed of propagation is controlled by the likelihood statistical component derived under constraints. During the propagation polygonalization extracts the zero-level surface set. The field distribution is computed using the improved shortest distance method or polyline distance method. The morphing algorithm then morphs the input concentric spheres into interface surfaces such as WM-GM and GM-CSF with cortical constraint. The system is optimized by computing the 3-D field in the narrow band on the morphing spheres.
    • 成像系统和方法使得能够在体扫描中从一系列空间偏移的2-D图像切片中进行3-D直接分割。 该算法首先使用Bottom-Hat灰度形态变换平滑并保留图像体积的界面边缘,然后通过保留拓扑约束,例如脑体积中的皮质厚度,使用快速3-D级集合进行3-D分割。 该方法使用表面传播技术输入相反的极性球体(收缩和扩张球体),其变形成体积内的形状。 传播的速度由在约束条件下导出的似然统计分量来控制。 在传播多边形期间提取零级表面集合。 使用改进的最短距离法或折线距离法计算场分布。 变形算法然后将输入的同心球变形为界面表面,如具有皮质约束的WM-GM和GM-CSF。 该系统通过计算变形球体上窄带中的3-D场进行优化。
    • 7. 发明授权
    • Black blood angiography method and apparatus
    • 黑血管造影方法和装置
    • US07020314B1
    • 2006-03-28
    • US10011037
    • 2001-11-13
    • Jasjit S. SuriKecheng Liu
    • Jasjit S. SuriKecheng Liu
    • G06K9/00
    • G06K9/527G01R33/5608G01R33/563
    • To produce a black body angiographic image representation of a subject (42), an imaging scanner (10) acquires imaging data that includes black blood vascular contrast. A reconstruction processor (38) reconstructs a gray scale image representation (100) from the imaging data. A post-acquisition processor (46) transforms (130) the image representation (100) into a pre-processed image representation (132). The processor (46) assigns (134) each image element into one of a plurality of classes including a black class corresponding to imaged vascular structures, bone, and air, and a gray class corresponding to other non-vascular tissues. The processor (46) averages (320) intensities of the image elements of the gray class to obtain a mean gray intensity value (322), and replaces (328) the values of image elements comprising non-vascular structures of the black class with the mean gray intensity value.
    • 为了产生对象(42)的黑体血管造影图像表示,成像扫描器(10)获取包括黑血血对比度的成像数据。 重建处理器(38)从成像数据重构灰度图像表示(100)。 采集后处理器(46)将图像表示(100)变换为预处理图像表示(132)。 处理器(46)将每个图像元素(134)分配为多个类别中的一个,包括对应于成像的血管结构,骨骼和空气的黑色类别和对应于其他非血管组织的灰色类别。 处理器(46)对灰度级别的图像元素的强度进行平均(320),以获得平均灰度强度值(322),并且将包含黑色类别的非血管结构的图像元素的值替换为(328) 平均灰度强度值。
    • 9. 发明授权
    • Gain selection for magnetic resonance imaging and spectroscopy
    • 磁共振成像和光谱学的增益选择
    • US06448770B1
    • 2002-09-10
    • US09538173
    • 2000-03-30
    • Kecheng LiuGordon D. DeMeesterMichael Burl
    • Kecheng LiuGordon D. DeMeesterMichael Burl
    • G01V300
    • G01R33/3621
    • A method of magnetic resonance imaging includes supporting a subject in an examination region of an MRI scanner(A). An MRI pulse sequence is applied to produce a detectable magnetic resonance signal (100) in a selected region of the subject. The magnetic resonance signal (100) includes a plurality of echos (102a-h) which are received. The plurality of received echos (102a-h) are subjected to a controllable gain factor such that at least two echos are subjected to different gain factors. In this manner, for example, a multi-contrast acquisition and imaging experiment may be achieved with each set of acquired echos and/or each image having a separately optimized (e.g., optimized for SNR considerations) gain factor individually selected and/or set therefor.
    • 磁共振成像的方法包括在MRI扫描仪(A)的检查区域中支撑被检体。 施加MRI脉冲序列以在受试者的选定区域产生可检测的磁共振信号(100)。 磁共振信号(100)包括接收的多个回波(102a-h)。 对多个接收到的回波(102a-h)进行可控增益因子,使得至少两个回波经受不同的增益因子。 以这种方式,例如,可以通过单独选择和/或设置每个采集的回波和/或每个图像具有单独优化(例如,针对SNR考虑进行优化)的增益因子来实现多对比度采集和成像实验 。