会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method to calculate hot-electron test voltage differential for assessing
microprocessor reliability
    • 计算热电子测试电压差的方法来评估微处理器的可靠性
    • US5634001A
    • 1997-05-27
    • US474441
    • 1995-06-07
    • Steven W. MittlDavid E. MoranTimothy J. O'GormanKimball M. Watson
    • Steven W. MittlDavid E. MoranTimothy J. O'GormanKimball M. Watson
    • G01R31/30G06F11/24G06F11/26G06F11/25
    • G06F11/24G01R31/3004G06F11/261
    • A method and system are provided for determining a guard band voltage differential for testing a microprocessor. The guard band voltage differential approximates microprocessor circuit propagation delay degradation expected to occur over the life of the microprocessor. The system and method are performed by first partitioning a microprocessor into a plurality of cones of n circuit level models. Timing simulation data and degradation data are created to represent, respectively, the timing operation for each of the circuit level model circuit paths, and the hot-electron effects on propagation delay degradation for each of the circuit level models. Propagation delay is identified using this data for each of the circuit paths for the circuit level models at times corresponding to the beginning-of-life and end-of-life of the microprocessor. Propagation delay degradation is calculated as the difference between the propagation delay at these times. A range of applied power supply voltages necessary to successfully perform a functional test of the microprocessor over a corresponding range of microprocessor cycle times is experimentally determined. Based on the calculated propagation delay degradation and on the range of applied power supply voltages, a guard band voltage differential for testing the microprocessor is determined.
    • 提供了一种用于确定用于测试微处理器的保护带电压差的方法和系统。 保护带电压差近似微处理器在微处理器使用寿命期间预期发生的微​​处理器电路传播延迟劣化。 该系统和方法通过首先将微处理器划分成n个电路级模型的多个锥来执行。 创建定时仿真数据和劣化数据以分别表示每个电路级模型电路路径的定时操作,以及针对每个电路级模型的热电子对传播延迟劣化的影响。 在与微处理器的使用寿命和使用寿命相对应的时间,针对电路电平模型的每个电路路径,使用该数据来识别传播延迟。 传播延迟退化计算为这些时间的传播延迟之间的差异。 在微处理器循环时间的相应范围内成功执行微处理器的功能测试所需的一系列应用电源电压是实验确定的。 基于所计算的传播延迟劣化和所施加的电源电压的范围,确定用于测试微处理器的保护带电压差。
    • 9. 发明授权
    • Deuterium reservoirs and ingress paths
    • 氘池和入口路径
    • US06770501B2
    • 2004-08-03
    • US10277835
    • 2002-10-23
    • Jay BurnhamEduard A. CartierThomas G. FerenceSteven W. MittlAnthony K. Stamper
    • Jay BurnhamEduard A. CartierThomas G. FerenceSteven W. MittlAnthony K. Stamper
    • H01L213205
    • H01L21/76224H01L21/3003H01L21/823481
    • Semiconductor structures are provided with on-board deuterium reservoirs or with deuterium ingress paths which allow for diffusion of deuterium to semiconductor device regions for passivation purposes. The on-board deuterium reservoirs are in the form of plugs which extend through an insulating layer and a deuterium barrier layer to the semiconductor substrate, and are preferably positioned in contact with a shallow trench oxide which will allow diffusion of deuterium to the semiconductor devices. The deuterium ingress paths extend through thin film layers from the top or through the silicon substrate. The latter include shallow trench isolations formed in a semiconductor substrate which are adjacent and connected to semiconductor devices formed in the semiconductor substrate, and where the back portion of the semiconductor substrate has been polished or ground down to the bottom of the shallow trench isolation, thereby allowing deuterium, during an anneal, to diffuse from the back through the shallow trench isolation to the semiconductor devices in the semiconductor substrate.
    • 半导体结构设置有板上氘储层或氘入口路径,其允许氘扩散到半导体器件区域用于钝化目的。 板上氘储存器是插塞的形式,其延伸穿过绝缘层和氘屏障层到半导体衬底,并且优选地定位成与允许氘扩散到半导体器件的浅沟槽氧化物接触。 氘入口路径从顶部或穿过硅衬底延伸穿过薄膜层。 后者包括形成在半导体衬底中的与沟道半导体衬底中形成的半导体器件相邻并连接的浅沟槽隔离,并且其中半导体衬底的后部已经被抛光或者被研磨到浅沟槽隔离的底部,由此 允许在退火期间的氘从后面通过浅沟槽隔离扩散到半导体衬底中的半导体器件。
    • 10. 发明授权
    • Deuterium reservoirs and ingress paths
    • 氘池和入口路径
    • US06521977B1
    • 2003-02-18
    • US09489277
    • 2000-01-21
    • Jay BurnhamEduard A. CartierThomas G. FerenceSteven W. MittlAnthony K. Stamper
    • Jay BurnhamEduard A. CartierThomas G. FerenceSteven W. MittlAnthony K. Stamper
    • H01L2358
    • H01L21/76224H01L21/3003H01L21/823481
    • Semiconductor structures are provided with on-board deuterium reservoirs or with deuterium ingress paths which allow for diffusion of deuterium to semiconductor device regions for passivation purposes. The on-board deuterium reservoirs are in the form of plugs which extend through an insulating layer and a deuterium barrier layer to the semiconductor substrate, and are preferably positioned in contact with a shallow trench oxide which will allow diffusion of deuterium to the semiconductor devices. The deuterium ingress paths extend through thin film layers from the top or through the silicon substrate. The latter include shallow trench isolations formed in a semiconductor substrate which are adjacent and connected to semiconductor devices formed in the semiconductor substrate, and where the back portion of the semiconductor substrate has been polished or ground down to the bottom of the shallow trench isolation, thereby allowing deuterium, during an anneal, to diffuse from the back through the shallow trench isolation to the semiconductor devices in the semiconductor substrate.
    • 半导体结构设置有板上氘储层或氘入口路径,其允许氘扩散到半导体器件区域用于钝化目的。 板上氘储存器是插塞的形式,其延伸穿过绝缘层和氘屏障层到半导体衬底,并且优选地定位成与允许氘扩散到半导体器件的浅沟槽氧化物接触。 氘入口路径从顶部或穿过硅衬底延伸穿过薄膜层。 后者包括形成在半导体衬底中的与沟道半导体衬底中形成的半导体器件相邻并连接的浅沟槽隔离,并且其中半导体衬底的后部已经被抛光或者被研磨到浅沟槽隔离的底部,由此 允许在退火期间的氘从后面通过浅沟槽隔离扩散到半导体衬底中的半导体器件。