会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明公开
    • 매질 중의 화학 화합물의 동일성 또는 비동일성 및 농도의결정 방법
    • 确定中间体化学化合物的特性,不合格和浓度的方法
    • KR1020080081192A
    • 2008-09-08
    • KR1020087018237
    • 2006-12-27
    • 바스프 에스이
    • 젠스,뢰디거밤바카리스,흐리스토스아흘러스,볼프강틸,에르빈
    • G01J3/28G01N21/64G01N21/31
    • G01J3/4406G01J3/02G01J3/0232G01J3/457G01J2001/4242G01N21/31G01N21/643G01N21/645G01N2021/6491G01N2201/129
    • The invention relates to a method for detecting at least one chemical compound V that is contained in a medium (312). Said method has a verification step (420), in which the presence of the compound V in the medium (312) is determined. In addition, the method has an analysis step (424), in which a concentration c of the chemical compound or compounds V is determined. The verification step comprises the following sub-steps: (a1) the medium (312) is irradiated with first analysis radiation (316) of a variable wavelength U, said wavelength U having at least two different values; (a2) a spectral response function A(U) is generated using the radiation (324) that has been absorbed and/or emitted and/or reflected and/or scattered by the medium (312), in response to the first analysis radiation (316); (a3) at least one spectral correlation function K(HU) is formed by comparing the spectral response function(s) A(U) with at least one model function R(U + HU), in which said model function(s) R(U) represent(s) a spectral measured function of a medium (312) that contains the chemical compound V and HU is a co-ordinate shift; (a4) the spectral correlation function(s) K(HU) is examined in a model identification step (418) and conclusions are drawn as to whether the chemical compound(s) V is or are contained in the medium (312). The analysis step (424) has the following sub-steps: (b1) the medium (312) is irradiated with at least second analysis radiation (318) that has at least one excitation wavelength UEX; (b2) at least one spectral analysis function B(UEX, URES) is generated using the radiation (326) of the response wavelength URES that has been absorbed and/or emitted and/or reflected and/or scattered by the medium (312), in response to the second analysis radiation (318) of wavelength UEX and conclusions concerning the concentration c are drawn.
    • 本发明涉及一种用于检测包含在介质(312)中的至少一种化合物V的方法。 所述方法具有确定步骤(420),其中化合物V存在于介质(312)中。 此外,该方法具有分析步骤(424),其中确定化合物或化合物V的浓度c。 验证步骤包括以下子步骤:(a1)用可变波长U的第一分析辐射(316)照射介质(312),所述波长U具有至少两个不同的值; (a2)响应于第一分析辐射(314),已经被介质(312)吸收和/或发射和/或发射和/或散射的辐射(324)产生光谱响应函数A(U) 316); (a3)通过将光谱响应函数A(U)与至少一个模型函数R(U + HU)进行比较来形成至少一个频谱相关函数K(HU),其中所述模型函数R (U)表示包含化合物V和HU是坐标位移的介质(312)的光谱测量功能; (a4)在模型识别步骤(418)中检查光谱相关函数K(HU),并且得出关于化合物V是或包含在介质(312)中的结论。 分析步骤(424)具有以下子步骤:(b1)用至少一个激发波长UEX的至少第二分析辐射(318)照射介质(312) (b2)使用由介质(312)吸收和/或发射和/或反射和/或散射的响应波长URES的辐射(326)产生至少一个光谱分析功能B(UEX,URES) ,响应于波长UEX的第二分析辐射(318)和关于浓度c的结论。
    • 6. 发明公开
    • 그래핀 양자점의 크기와 형태를 분류하여 그래핀 양자점의 크기와 형태에 따른 발광에너지 및 광흡수 에너지를 예측하는 방법
    • 通过改变其尺寸和形状来获得石墨量子的吸收和发光特性的方法
    • KR1020140016412A
    • 2014-02-07
    • KR1020140005747
    • 2014-01-16
    • 경희대학교 산학협력단
    • 최석호김성
    • G01J3/457G01J3/42
    • G01J3/42C01B32/182G01J3/457H01B1/04
    • The present invention relates to a method for obtaining correlation between luminescence energy and photoabsorption by classifying the size and the shape of graphene quantum dots. The method controls luminescence and absorption characteristics by changing the size and the shape of the graphene quantum dots by analyzing correlation between luminescence energy and photoabsorption characteristics according to the size and the shape of the graphene quantum dots, by fabricating a graphene oxide sheet from graphite using a Hummers method and fabricating various sizes of graphene quantum dots (GQDs) by repetitive oxidation and reduction and thermal treatment in various compounds, and by fabricating quantum dots with uniform size and shape by filtering using a nano structure membrane. The method comprises: a graphene quantum dot size and shape classification step (S11); a luminescence energy acquisition step (S12) according to the size of the graphene quantum dots; a correlation acquisition step (S13) between the size of the graphene quantum dot and luminescence energy; an occupancy rate acquisition step (S14) of graphene quantum dot shape; and a correlation acquisition step (S15) between the size of graphene quantum dot and photoabsorption. The method of the present invention can increase applicability of not only an analog device but also a digital photoelectronic device by acquiring correlation between luminescence energy and photoabsorption by fabricating graphene quantum dots using a simple physical and a chemical method and classifying the size and the shape of the graphene quantum dots based on luminescence and absorption characteristics. [Reference numerals] (AA) START; (BB) End; (S11) Step of classifying size and shape of graphene quantum dots; (S12) Step of acquiring luminescence energy according to the size of graphene quantum dots; (S13) Step of acquiring correlation between the size of graphene quantum dots and luminescence energy; (S14) Step of acquiring occupancy rate of graphene quantum dot type; (S15) Step of acquiring correlation between the size of graphene quantum dots and photoabsorption
    • 本发明涉及通过对石墨烯量子点的尺寸和形状进行分类来获得发光能量和光吸收之间的相关性的方法。 该方法通过根据石墨烯量子点的尺寸和形状通过分析石墨烯量子点的尺寸和形状来分析石墨烯量子点的尺寸和形状来控制发光和吸收特性,通过使用 Hummers方法,并通过在各种化合物中重复氧化和还原和热处理制造各种尺寸的石墨烯量子点(GQD),并且通过使用纳米结构膜过滤制造具有均匀尺寸和形状的量子点。 该方法包括:石墨烯量子点尺寸和形状分类步骤(S11); 根据石墨烯量子点的尺寸的发光能量获取步骤(S12); 在石墨烯量子点的尺寸和发光能量之间的相关获取步骤(S13); 石墨烯量子点形状的占用率获取步骤(S14); 以及在石墨烯量子点的尺寸和光吸收之间的相关获取步骤(S15)。 本发明的方法可以通过采用简单的物理和化学方法,通过采用简单的物理和化学方法制造石墨烯量子点来获取发光能量和光吸收之间的相关性,从而增加了模拟装置的应用性,同时也增加了数字光电子装置的适用性, 基于发光和吸收特性的石墨烯量子点。 (附图标记)(AA)START; (BB)结束; (S11)对石墨烯量子点的尺寸和形状进行分类的步骤; (S12)根据石墨烯量子点的大小获取发光能量的步骤; (S13)获取石墨烯量子点的尺寸与发光能量之间的相关性的步骤; (S14)获取石墨烯量子点类型的占有率的步骤; (S15)获取石墨烯量子点的尺寸与光吸收之间的相关性的步骤
    • 8. 发明公开
    • 온도 측정 기구 및 온도 측정 방법
    • 温度测量装置和温度测量方法
    • KR1020140042705A
    • 2014-04-07
    • KR1020130114315
    • 2013-09-26
    • 도쿄엘렉트론가부시키가이샤
    • 스즈키도모히로혼다도모키오오야가즈히로
    • G01J5/02
    • G01J5/0285G01J3/457G01J5/061
    • A heat treatment device using a light source as a heat source performs accurate temperature measurement for a temperature band and an object which are difficult to measure the temperature with an existing temperature measuring method. A temperature measuring tool includes an illuminance monitor (50) measuring illuminance u from a light emitting element unit (30) and placed between a wafer (W) and the light emitting element unit (30), a temperature sensor (20a), and a calculating part (152) estimating the actual temperature P of the wafer (W) based on the simulation temperature Tc simulated by illuminance u and the temperature sensor (20a). The estimation of the actual temperature P of the wafer (W) in the calculating part (152) is performed on the basis of a previously calculated first correlation between the illuminance u and estimated temperature y of the wafer (W) estimated with the illuminance u and a previously calculated second correlation between the simulation temperature Tc simulated by the temperature sensor (20a) and the estimated temperature y of the wafer (W) estimated with the illuminance u.
    • 使用光源作为热源的热处理装置利用现有的温度测量方法对难以测量温度的温度带和物体进行精确的温度测量。 一种温度测量工具,包括:测量来自发光元件单元(30)的照度u并放置在晶片(W)和发光元件单元(30)之间的照度监视器(50),温度传感器(20a)和 计算部(152)基于由照度u和温度传感器(20a)模拟的模拟温度Tc来估计晶片(W)的实际温度P. 基于先前计算出的用照度u估计的晶片(W)的照度u和估计温度y之间的第一相关性来执行计算部(152)中的晶片(W)的实际温度P的估计, 以及由温度传感器(20a)模拟的模拟温度Tc与用照度u估计的晶片(W)的估计温度y之间的先前计算的第二相关。
    • 10. 发明公开
    • 디지털 자기 상관 분광기
    • 数字自动相关光谱
    • KR1020020078887A
    • 2002-10-19
    • KR1020010019156
    • 2001-04-11
    • 최한규
    • 최한규
    • G01J3/457
    • G01J3/457G01J3/2889G01R23/167G02B6/29389
    • PURPOSE: A digital auto-correlation spectroscope is provided to achieve improved sensitivity, while allowing for an observation for the high frequency wide band signal. CONSTITUTION: A digital auto-correlation spectroscope comprises an intermediate frequency to baseband converting unit(100) for converting a high frequency wideband signal into a baseband signal; a correlator unit(200) for converting an input signal into a digital signal, converting the digital signal into three-level data within the observed bandwidth, and obtaining an auto-correlation coefficient; a correlation control system(400) for inputting/outputting control signals for controlling the correlator unit and the intermediate frequency to baseband converting unit, and outputting data; an interface unit(300) for interface of the correlator unit to the correlation control system; and a communication interface unit(500) for communication with an external system control computer for controlling the digital auto-correlation spectroscope.
    • 目的:提供数字自相关分析仪,以实现更高的灵敏度,同时允许观察高频宽带信号。 构成:数字自相关分光器包括用于将高频宽带信号转换为基带信号的中频到基带转换单元(100); 用于将输入信号转换为数字信号的相关器单元(200),将数字信号转换成观察带宽内的三电平数据,并获得自相关系数; 相关控制系统(400),用于输入/输出用于控制相关器单元和中频到基带转换单元的控制信号,并输出数据; 接口单元(300),用于将相关器单元与相关控制系统接口; 以及用于与外部系统控制计算机进行通信以控制数字自相关光谱仪的通信接口单元(500)。