会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • 지중 지질매체의 산 취약성 평가 방법
    • 地下血脂介质酸脆弱性评估
    • KR101754297B1
    • 2017-07-06
    • KR1020160155297
    • 2016-11-21
    • 한국지질자원연구원
    • 현성필하선진고경석문희선신도연이은희
    • G06Q50/26G05B23/02
    • G06Q50/26G05B23/0221G05B23/0283
    • 본발명은양 배수등급과토양에포함되는광물질에따른산 중화정도의차이를이용하여취약성점수를부여하여저장한후, 지질매체별로산 취약성을평가할수 있도록하는지중지질매체의산 취약성평가장치및 방법에관한것이다. 상기지중지질매체의산 취약성평가방법은, 데이터수집부(6), 산취약성DB부(7), 입력부(10), 평가인자추출부(20), 산취약성점수산출부(30) 및산취약성등급산출부(40))를포함하여구성되는산 취약성평가장치(1)에의한산 취약성평가방법에있어서, 산취약성DB부생성과정(S10); 평가인자별산 취약성점수추출과정(S20); 및산취약성점수산출과정(S30);을포함하여이루어져, 토양별또는지역별산 취약점수를용이하게평가할수 있도록하는것에의해산 누출사고의발생시 방제대책을효율적이고용이하게수립할수 있도록하는효과를제공한다.
    • 本发明是保持给排水率和土壤矿物使用的包括在所述介质的方法和脂质酸脆弱性评估装置中的酸中和度的差脆弱点的量进行评估由脂质介质的酸的脆弱性 Lt。 地下地质介质,所述数据收集单元6的酸的脆弱性评估方法,酸漏洞DB部7,输入部10,评价参数提取单元20,计算单元30,酸的脆弱性得分mitsan漏洞评分 (40)),所述方法包括以下步骤:(S10)生成酸性脆弱性DB部分; 额定因数byeolsan漏洞点提取处理(S20); 提供这样你就可以有效地建立的情况下,控制措施是什么组成的海洋溢油就业的效果,这样你就可以轻松地评估漏洞土壤特异性或地区的高山,其中包括:mitsan漏洞分数计算处理(S30) 的。
    • 2. 发明授权
    • 물리화학적 선별법에 의한 구리, 아연, 납 등 비철제련공정에서 배출되는 폐비철 슬래그로부터 철을 분리 회수하는 방법
    • 一种从铜,锌和铅冶炼工艺生产的废物非铁素石中回收和分离铁的物理和化学分离方法
    • KR101272291B1
    • 2013-06-07
    • KR1020120099277
    • 2012-09-07
    • 한국지질자원연구원
    • 김병수이재천정수복신도연
    • C22B7/04
    • C22B5/00C22B1/005C22B7/04Y02P10/212
    • PURPOSE: A method for recovering and separating iron from waste nonferrous iron slag, such as copper, zinc, lead and the like, generated from the nonferrous smelting process by a physical-chemical separation method is provided to group-divide ion into condensed melting ion, in which the sum of content of nonferrous metal is 1% or less, by using a magnetic material, by performing the wet and dry magnetic separation according to the size of particles after reduced ion and cementite ion, which are generated by solid-reduction reaction, are liberated. CONSTITUTION: A method for recovering and separating iron from waste nonferrous iron slag, such as copper, zinc, lead and the like, generated from the nonferrous smelting process by a physical-chemical separation method comprises the steps of: crushing waste nonferrous slag(a); changing the crystalline structure of iron oxide, which is combined with alumina(Al_2O_3), limestone(CaO), magnesium oxide(MgO), quartz(SiO_2), zinc oxide(ZnO), copper oxide(CuO), lead oxide(PbO) of waste nonferrous iron slag in a non-crystalline structure state into reduced ion(Fe) and cementite ion(Fe_2C) by solid-reduction reaction by mixing the crashed material with reductant carbon and reaction catalyzer calcium carbonate(CaCO_3) (b); group-dividing the reduced ion and cementite ion, which is generated in the step(b) by crushing the obtained from the step(b) (c); separating the crashed material obtained from the step(c) according to the size of particle(d); mixing the crushed material obtained from the step(d) according to the size of particle by dividing and recovering the iron into the condensed melting ion, which is magnetic material, by dry magnetic separation(e). [Reference numerals] (AA) Step of crushing waste nonferrous slag; (BB) Step of mixing waste nonferrous slag, carbon, and CaCO_3 and transforming the mixture into a solid; (CC) Step of crushing the waste nonferrous slag solid; (DD) Step of sorting the crushed waste nonferrous slag solid by particle size; (EE) Step of mixing magnetic material after dry magnetic sorting and wet magnetic sorting by particle size
    • 目的:提供一种通过物理化学分离方法从有色冶炼过程产生的废铁有色铁渣(如铜,锌,铅等)中回收和分离铁的方法,将其分成冷凝熔融离子 通过使用磁性材料,通过根据通过固相还原产生的还原离子和渗碳体离子之后的颗粒尺寸进行湿式和干式磁分离,其中有色金属含量的总和为1%以下 反应,解放了。 构成:通过物理化学分离方法从有色金属冶炼过程产生的废铜有色铁渣(如铜,锌,铅等)中回收和分离铁的方法包括以下步骤:粉碎废有色金属渣 ); 改变与氧化铝(Al_2O_3),石灰石(CaO),氧化镁(MgO),石英(SiO_2),氧化锌(ZnO),氧化铜(CuO),氧化铅(PbO)等)结合的氧化铁的结晶结构, (CaCO_3)(b)混合破碎的材料与还原剂碳和反应催化剂碳酸钙(CaCO 3)(b)的固相还原反应的非离子(Fe)和渗碳体离子(Fe_2C) 通过从步骤(b)(c)获得的粉碎来分批在步骤(b)中产生的还原离子和渗碳体离子; 根据颗粒(d)的尺寸分离由步骤(c)获得的碎屑材料; 通过将干燥磁分离(e)将铁分解并回收到作为磁性材料的冷凝的熔融离子中,根据颗粒尺寸将由步骤(d)获得的粉碎材料混合。 (附图标记)(AA)破碎废铁渣的步骤; (BB)将废铁,碳和CaCO_3混合并将混合物变成固体的步骤; (CC)破碎废铁渣固体的步骤; (DD)颗粒大小对粉碎的废铁矿渣固体进行分选的步骤; (EE)干磁分选后的磁性材料和通过粒径进行湿磁选择的步骤