会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Battery charge/discharge control device
    • 电池充电/放电控制装置
    • JP2013240236A
    • 2013-11-28
    • JP2012113015
    • 2012-05-17
    • Honda Motor Co Ltd本田技研工業株式会社
    • KAWAKITA KOJI
    • H02J7/00B60L3/00B60L11/18H01M10/44H01M10/48
    • Y02T10/7005Y02T10/7044
    • PROBLEM TO BE SOLVED: To provide a charge/discharge control device which can draw battery performance to the maximum extent possible while surely restraining the degradation of it.SOLUTION: A performance decrement allowance calculation unit M3 calculates a performance decrement allowance Kof a battery B from an actual performance maintenance factor Acalculated by an actual performance maintenance factor calculation unit M1 and a target performance maintenance factor Aset by a target performance maintenance factor setting unit M2. A control parameter determination unit M4 determines a control parameter for a first degradation factor of the battery B on the basis of the performance decrement allowance K. A battery control unit M5 controls charging/discharging of the battery B on the basis of the control parameter. At this time, a control parameter conversion unit M6 converts the control parameter to an estimated performance decrement ^Kof the battery B, and a performance decrement allowance correction value calculation unit M7 calculates a performance decrement allowance correction value Bon the basis of the estimated performance decrement ^Kand an actual performance decrement D, whereby charge and discharge are limited according to a degradation rate specific to the battery B.
    • 要解决的问题:提供一种能够最大程度地提高电池性能的充放电控制装置,同时可靠地抑制其劣化。解决方案:性能递减容限计算单元M3计算电池B的性能减量容许K 由实际的性能维护因子计算单元M1计算出的实际性能维护系数和目标性能维护因子设定单元M2的目标性能维护因子Aset。 控制参数确定单元M4基于性能递减余量K确定电池B的第一劣化因子的控制参数。电池控制单元M5基于控制参数来控制电池B的充电/放电。 此时,控制参数转换单元M6将控制参数转换为电池B的估计性能减小量K,性能递减容差校正值计算单元M7根据估计的性能下降的基础来计算性能递减容限校正值Bon ^表示实际的性能减量D,由此根据电池B特有的劣化速率来限制充放电。
    • 2. 发明专利
    • Open-circuit voltage estimation device
    • 开路电压估算装置
    • JP2013208034A
    • 2013-10-07
    • JP2012078233
    • 2012-03-29
    • Honda Motor Co Ltd本田技研工業株式会社
    • KAWAKITA KOJI
    • H02J7/00G01R19/00G01R31/36H01M10/48
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide an open-circuit voltage estimation device capable of accurately estimating an open-circuit voltage of a capacitor.SOLUTION: An open-circuit voltage estimation device includes: a current acquisition section acquiring a current value of a capacitor; a voltage acquisition section acquiring a terminal voltage value of the capacitor; an internal resistance calculation section calculating internal resistance of the capacitor; a diffusion-polarization voltage calculation section calculating, from the current value and the terminal voltage value, a diffusion-polarization voltage that is a voltage drop amount based on polarization in the capacitor; and an open-circuit voltage calculation section calculating an open-circuit voltage from the internal resistance, the current value, the terminal voltage value, and the diffusion-polarization voltage. The diffusion-polarization voltage calculation section calculates the diffusion-polarization voltage on the basis of the ion diffusion state of an electrode of the capacitor.
    • 要解决的问题:提供一种能够精确估计电容器的开路电压的开路电压估计装置。解决方案:一种开路电压估计装置,包括:电流获取部,获取电容器的电流值; 获取所述电容器的端子电压值的电压获取部; 内部电阻计算部,计算电容器的内部电阻; 扩散极化电压计算部,根据所述电流值和所述端子电压值,计算作为所述电容器中的极化的电压降量的扩散极化电压; 以及从内部电阻,电流值,端子电压值和扩散极化电压计算开路电压的开路电压计算部。 扩散极化电压计算部根据电容器的电极的离子扩散状态来计算扩散极化电压。
    • 3. 发明专利
    • Charge rate estimation device
    • 充电速率估算装置
    • JP2012225713A
    • 2012-11-15
    • JP2011092267
    • 2011-04-18
    • Honda Motor Co Ltd本田技研工業株式会社
    • KAWAKITA KOJI
    • G01R31/36H01M10/48H02J7/00
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide a charge rate estimation device capable of exactly estimating the charge rate of a capacitor.SOLUTION: The charge rate estimation device estimates the charge rate of the capacitor having the characteristic including a part where a change of an open circuit voltage with respect to a change of the charge rate is flat, based on the open circuit voltage and the characteristic. This charge rate estimation device includes: an internal resistance calculation section for calculating the internal resistance of the capacitor based on respective change amounts of terminal voltage of the capacitor detected by a voltage sensor and a charge/discharge current of the capacitor; an OCV calculation section for calculating the open circuit voltage of the capacitor based on the terminal voltage, charge/discharge current and internal resistances; an SOC change amount calculation section for calculating the charge amount of the charge rate of the capacitor based on an integrated value of the charge/discharge current in a prescribed period; and an off-set error compensation section for compensating the off-set error of the voltage sensor so that the open circuit voltage calculated by the OCV calculation section is close to the open circuit voltage of the flat part shown by the characteristic of the capacitor provided that the change rate of the open circuit voltage in the prescribed period with respect to the change amount of the charge rate is smaller than a first threshold.
    • 要解决的问题:提供能够精确地估计电容器的充电速率的充电速率估计装置。 电荷率估计装置基于开路电压估计具有包括开路电压相对于充电速率的变化变化的部分的特性的电容器的充电速率,以及 的特点。 该电荷率估计装置包括:内部电阻计算部,其根据由电压传感器检测出的电容器的端子电压的变化量和电容器的充放电电流来计算电容器的内部电阻; OCV计算部,其基于端子电压,充放电电流和内部电阻计算电容器的开路电压; SOC变化量计算部,根据规定期间的充放电电流的积分值计算电容器的充电量的充电量; 以及用于补偿电压传感器的偏移误差的偏置误差补偿部分,使得由OCV计算部分计算的开路电压接近所提供的电容器的特性所示的平坦部分的开路电压 相对于充电率的变化量,规定期间内的开路电压的变化率小于第一阈值。 版权所有(C)2013,JPO&INPIT
    • 4. 发明专利
    • Estimation device for battery capacity and estimation method for battery capacity
    • 电池容量估算装置和电池容量估算方法
    • JP2012108046A
    • 2012-06-07
    • JP2010257986
    • 2010-11-18
    • Honda Motor Co Ltd本田技研工業株式会社
    • KAWAKITA KOJI
    • G01R31/36H01M10/44H01M10/48H02J7/00
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide an estimation device and method for battery capacity capable of estimating total capacity of a battery without extending a charging time.SOLUTION: It is determined from an ion diffusion state estimated based on an elapsed time T0 from when previously turning off an ignition switch to when previously turning on a charging switch whether or not an ion concentration in a battery varies just after tuning on the charging switch. When it is determined that the ion concentration varies, charging is started without obtaining an open circuit voltage (OCV). When it is determined that the ion concentration becomes substantially uniform, the charging is temporarily stopped (time Ts1) and the OCV is obtained (time Ts2). The charging is restarted after the OCV is obtained.
    • 要解决的问题:提供一种能够在不延长充电时间的情况下估计电池的总容量的电池容量的估计装置和方法。 解决方案:根据从先前关闭点火开关到先前打开充电开关的经过时间T0估计的离子扩散状态来确定电池中的离子浓度是否在调谐之后变化 充电开关。 当确定离子浓度变化时,开始充电而不获得开路电压(OCV)。 当确定离子浓度变得基本均匀时,暂时停止充电(时间Ts1)并获得OCV(时间Ts2)。 在获得OCV后重新开始充电。 版权所有(C)2012,JPO&INPIT
    • 5. 发明专利
    • Error correction method of current sensor
    • 电流传感器误差校正方法
    • JP2011209086A
    • 2011-10-20
    • JP2010076560
    • 2010-03-30
    • Honda Motor Co Ltd本田技研工業株式会社
    • KAWAKITA KOJI
    • G01R19/00G01R31/36G01R35/00H01M10/48
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To properly improve detection precision of a current sensor by sequentially correcting the error of the current sensor.SOLUTION: The error correction method of a current sensor includes: the step in which, during a first period where charging with a charger 1 is being performed, the error of a current sensor 19 is corrected in OFF state, to calculate a fully charged capacity CAPAchg of a secondary battery 11 by using a current sensor output I after the correction; the step in which, during a second period containing at least the travel time of an electric vehicle 10, other than the first period, a fully charged capacity CAPAdrv of the secondary battery 11 is calculated using the current sensor output I; and the step for correcting the error of the current sensor 19 by using a result of comparison between the fully charged capacity CAPAchg and the free charged capacity CAPAdrv.
    • 要解决的问题:通过顺序地校正电流传感器的误差来适当地提高电流传感器的检测精度。解决方案:电流传感器的误差校正方法包括:在充电器的第一时段期间, 1,电流传感器19的误差在OFF状态下被校正,通过使用校正后的电流传感器输出I来计算二次电池11的完全充电容量CAPAchg; 使用电流传感器输出I,计算二次电池11的完全充电容量CAPAdrv的至少包含电动车辆10的行驶时间以外的第一期间的第二期间的步骤; 以及通过使用完全充电容量CAPAchg和自由充电容量CAPAdrv进行比较的结果来校正电流传感器19的误差的步骤。
    • 6. 发明专利
    • Method for estimating residual capacity of battery
    • 电池剩余容量估算方法
    • JP2011106952A
    • 2011-06-02
    • JP2009262016
    • 2009-11-17
    • Honda Motor Co Ltd本田技研工業株式会社
    • KAWAKITA KOJI
    • G01R31/36H01M10/48H02J7/00
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide a method for detecting a battery capacity which enables attainment of a correct SOC estimated value.
      SOLUTION: In an SOC estimating device 1 wherein an SOC estimated value obtained by estimation by an equivalent circuit model system and an SOC estimated value obtained by estimation by current integration are switched over at a prescribed timing. The prescribed timing is set at the time when it is established that an error of a voltage estimated value by an equivalent circuit model from an actual voltage value obtained from a voltage sensor 60 is a prescribed value or below, an actual current value obtained from a current sensor 70 being a prescribed value or below, an actual current variation value within a prescribed period being a prescribed value or below, that an actual voltage variation value within a prescribed period is a prescribed value or below and a battery temperature obtained from a temperature sensor 80 being a prescribed value or above.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种用于检测能够实现正确的SOC估计值的电池容量的方法。 解决方案:在其中通过等效电路模型系统的估计获得的SOC估计值和通过电流积分的估计获得的SOC估计值在规定的时刻切换的SOC估计装置1中。 当确定通过等效电路模型从电压传感器60获得的实际电压值的电压估计值的误差为规定值以下时,设定规定的定时,从 电流传感器70为规定值以下,规定期间内的实际电流变化值为规定值以下,规定期间内的实际电压变化值为规定值以下,从温度得到的电池温度 传感器80为规定值以上。 版权所有(C)2011,JPO&INPIT
    • 7. 发明专利
    • Method for detecting battery capacity
    • 检测电池容量的方法
    • JP2011106953A
    • 2011-06-02
    • JP2009262017
    • 2009-11-17
    • Honda Motor Co Ltd本田技研工業株式会社
    • KAWAKITA KOJI
    • G01R31/36H01M10/48H02J7/00
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide a method for detecting a battery capacity which enables detection of the full charging capacity of a battery with high accuracy.
      SOLUTION: A battery capacity calculating device 1 detects the full charging capacity of the battery from a capacity change value of the battery between first detection timing and second detection timing, a change rate of the residual capacity of the battery calculated by an equivalent circuit model system and an integrated value of a current value. Herein the first and second detecting timings are so set as to avoid the condition wherein a modeling error due to an equivalent circuit model becomes large.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种用于检测电池容量的方法,其能够高精度地检测电池的完全充电容量。 解决方案:电池容量计算装置1根据第一检测定时和第二检测定时之间的电池的容量变化值来检测电池的完全充电容量,由等效电池计算的电池的剩余容量的变化率 电路模型系统和当前值的集成值。 这里,第一和第二检测定时被设置为避免由于等效电路模型引起的建模误差变大的情况。 版权所有(C)2011,JPO&INPIT
    • 8. 发明专利
    • Capacitor control device
    • 电容器控制装置
    • JP2012083149A
    • 2012-04-26
    • JP2010228192
    • 2010-10-08
    • Honda Motor Co Ltd本田技研工業株式会社
    • ISHIKAWA YOSUKEKAWAKITA KOJIWAKASHIRO TERUO
    • G01R31/36B60K6/46B60K6/54B60L3/00B60L11/12B60L11/18B60W10/08B60W20/00H01M10/44H01M10/48H02J7/00H02J7/04
    • Y02T10/6217Y02T10/7005Y02T10/7022Y02T10/7077
    • PROBLEM TO BE SOLVED: To provide a capacitor control device capable of making a derivation timing of a charging state of a capacitor faster when it is determined that output characteristics of the capacitor are in a transient state in which they are changing.SOLUTION: The capacitor control device includes a capacitor for supplying power to a load, a charging part for changing the capacitor, a charging state derivation part for deriving a charging state of the capacitor, based on a voltage between terminals of the capacitor and a control part for determining a state related to a variation of the output characteristics of the capacitor and controlling charge of the capacitor by the charging part and a derivation timing of a charging state of the capacitor by the charting state derivation part, according to the determined state. When determining that the output characteristics of the capacitor are in a transient state in which they are changing, the control part controls the charging part to charge the capacitor for a predetermined time, and the charging state derivation part to derive a charging state of the capacitor after the lapse of the predetermined time.
    • 要解决的问题:提供一种电容器控制装置,当确定电容器的输出特性处于它们正在改变的过渡状态时,能够使电容器的充电状态的导出定时更快。 解决方案:电容器控制装置包括用于向负载供电的电容器,用于改变电容器的充电部分,用于导出电容器的充电状态的充电状态导出部分,基于电容器的端子之间的电压 以及控制部分,用于根据所述电容器的输出特性的变化和由所述充电部分控制所述电容器的电荷以及所述图形状态导出部分的所述电容器的充电状态的导出定时,确定与所述电容器的输出特性的变化相关的状态, 确定状态。 当确定电容器的输出特性处于它们正在改变的瞬时状态时,控制部分控制充电部分对电容器充电预定时间,并且充电状态导出部分导出电容器的充电状态 经过预定时间后。 版权所有(C)2012,JPO&INPIT
    • 9. 发明专利
    • Charged state estimation device and deterioration state estimation device of secondary battery
    • 充电状态估计装置和二次电池的判定状态估计装置
    • JP2011122951A
    • 2011-06-23
    • JP2009281073
    • 2009-12-11
    • Honda Motor Co Ltd本田技研工業株式会社
    • KAWAKITA KOJI
    • G01R31/36H01M10/48H02J7/00
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To estimate a charged state (SOC) and a deterioration state of a secondary battery easily and highly accurately by a discrete time system.
      SOLUTION: In a charged state estimation device 10, a voltage variation and a current variation during one operation period are calculated by a voltage current variation operation part 11. In a parameter estimation part 12, the secondary battery is simulated by an equivalent circuit model, and each parameter [a
      1 , b
      0 , b
      1 ] of the equivalent circuit model is estimated successively by a least-squares method. In an OCV operation part 13, a closed circuit voltage V
      0 is calculated by using each calculated parameter. In a charged state operation part 14, a value of the charged state (SOC) corresponding to the calculated closed circuit voltage V
      0 is calculated highly accurately based on a correlation between the closed circuit voltage V
      0 and the charged state (SOC).
      COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:通过离散时间系统容易且高精度地估计二次电池的充电状态(SOC)和劣化状态。 解决方案:在充电状态估计装置10中,通过电压电流变化运算部11计算一个运算期间的电压变化和电流变化。在参数推定部12中,二次电池由等效 电路模型,并且等效电路模型的每个参数[a 1 ,b 0 ,b 1 依次用最小二乘法 方法。 在OCV操作部分13中,通过使用每个计算的参数来计算闭路电压V S 0 。 在充电状态操作部分14中,基于闭路电压V SB SB之间的相关性,高精度地计算与计算出的闭路电压V 0相对应的充电状态(SOC) 0 和充电状态(SOC)。 版权所有(C)2011,JPO&INPIT