会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Silicon carbide semiconductor device and method of manufacturing the same
    • 硅碳化硅半导体器件及其制造方法
    • JP2013247252A
    • 2013-12-09
    • JP2012120263
    • 2012-05-25
    • National Institute Of Advanced Industrial & Technology独立行政法人産業技術総合研究所Fuji Electric Co Ltd富士電機株式会社
    • TANAKA ATSUYUKIIWAMURO NORIYUKIHARADA SHINSUKE
    • H01L29/78H01L21/336H01L29/12H01L29/739
    • H01L29/7802H01L21/046H01L29/045H01L29/0634H01L29/0696H01L29/1095H01L29/1608H01L29/4238H01L29/66068H01L29/66325H01L29/66712H01L29/7395
    • PROBLEM TO BE SOLVED: To obtain reliability to reduce on-resistance without causing damage to a gate oxide film even in high voltage application.SOLUTION: A silicon carbide semiconductor device comprises: a first conductivity type semiconductor substrate 1; a first conductivity type semiconductor layer 2 which is formed on the semiconductor substrate 1 and has a low impurity concentration; a second conductivity type semiconductor layer 2 which is selectively formed on the first conductivity type semiconductor layer 2 and has a high impurity concentration; a second conductivity type base layer 4 which is formed on a surface of the second conductivity type semiconductor layer 3 and has a low impurity concentration; a first conductivity type source region 7 selectively formed in a surface layer of the base layer 4; a first conductivity type well region 6 formed so as to penetrate the base layer 4 from a surface to reach the first conductivity type semiconductor layer 2; and a gate electrode 9 formed via a gate insulation film on a surface of the base layer 4 sandwiched between the source region 7 and the well region 6. Portions of the second conductivity type semiconductor layers 3 in different cells are connected with each other by a connection portion 3a in a region under the well region 6.
    • 要解决的问题:即使在高电压应用中,也可以获得降低导通电阻而不会对栅极氧化膜造成损害的可靠性。解决方案:一种碳化硅半导体器件包括:第一导电型半导体衬底1; 形成在半导体衬底1上并具有低杂质浓度的第一导电类型半导体层2; 第二导电型半导体层2,其被选择性地形成在第一导电类型半导体层2上并且具有高杂质浓度; 形成在第二导电型半导体层3的表面上并具有低杂质浓度的第二导电型基极层4; 选择性地形成在基底层4的表面层中的第一导电型源极区域7; 形成为从表面贯穿基层4到达第一导电型半导体层2的第一导电型阱区域6; 以及在基极层4的夹在源极区域7和阱区域6之间的基极层4的表面经由栅极绝缘膜形成的栅极电极9.不同电池单元中的第二导电型半导体层3的一部分通过 连接部分3a在阱区域6下方。
    • 5. 发明专利
    • Silicon carbide vertical mosfet and manufacturing method of the same
    • 硅碳化钨垂直MOSFET及其制造方法
    • JP2013211447A
    • 2013-10-10
    • JP2012081429
    • 2012-03-30
    • National Institute Of Advanced Industrial & Technology独立行政法人産業技術総合研究所Fuji Electric Co Ltd富士電機株式会社
    • IWAMURO NORIYUKIHARADA SHINSUKEHOSHI YASUYUKIHARADA YUICHI
    • H01L29/12H01L21/336H01L29/78
    • PROBLEM TO BE SOLVED: To achieve both of improvement in element withstanding voltage and reduction in on-resistance at the same time by generating a depletion layer at a joint surface between a drift layer which is an n-type withstanding voltage region and a high-concentration p-type layer even when an impurity concentration of the drift layer of the silicon carbide vertical MOSFET is increased.SOLUTION: A silicon carbide vertical MOSFET comprises: a first conductivity type well region selectively formed on a surface of a substrate 1; an interlayer insulation film 13 which is formed via a gate insulation film 8 and a gate poly-Si electrode 9, on at least a part of a surface exposed part of a second conductivity type third semiconductor layer 21 sandwiched between a first conductivity type source region 5 and the first conductivity type well region; a source electrode 10 which contacts surfaces of the first conductivity type source region 5 and the third semiconductor layer 21 in common; and a drain electrode 11 formed on a rear face of the silicon carbide substrate 1. At least one layer of high-concentration and second conductivity type semiconductor layers 3, 31 is formed inside the first semiconductor layer 2 on the same position.
    • 要解决的问题为了同时通过在作为n型耐压区域的漂移层和高压电极之间的接合面处产生耗尽层来实现元件耐受电压的提高和导通电阻的降低, 即使当碳化硅垂直MOSFET的漂移层的杂质浓度增加时,浓度p型层也增加。解决方案:碳化硅垂直MOSFET包括:选择性地形成在衬底1的表面上的第一导电类型阱区; 在第二导电类型的第三半导体层21的表面暴露部分的至少一部分上夹着第一导电类型的源极区域和第二导电类型的源极区域之间经由栅极绝缘膜8和栅极多晶硅电极9形成的层间绝缘膜13 5和第一导电类型井区; 与第一导电型源极区域5和第三半导体层21的表面共同接触的源电极10; 以及形成在碳化硅衬底1的背面上的漏电极11.至少一层高浓度和第二导电类型半导体层3,31在第一半导体层2的内部形成在同一位置上。
    • 6. 发明专利
    • Silicon carbide semiconductor element manufacturing method
    • 硅碳化硅半导体元件制造方法
    • JP2013232557A
    • 2013-11-14
    • JP2012104224
    • 2012-04-27
    • National Institute Of Advanced Industrial & Technology独立行政法人産業技術総合研究所Fuji Electric Co Ltd富士電機株式会社
    • FUKUDA KENJIIWAMURO NORIYUKIGOTO MASAHIDE
    • H01L21/28
    • PROBLEM TO BE SOLVED: To form an ohmic electrode which can ensure adhesion of the electrode by inhibiting release of carbon while ensuring an ohmic property.SOLUTION: A silicon carbide semiconductor element manufacturing method comprises a process of forming a contact electrode on a silicon carbide substrate 1. In the process of forming the contact electrode, metal (pure metal or alloy which includes any one or more among titanium, zirconium and hafnium) which easily generates carbide and also easily generates nitride is used as an electrode chief material of the contact electrode and thermal annealing is performed in an atmosphere consisting primarily of nitrogen thereby to convert in thermal annealing, the metal in the electrode material of the contact electrode in a region of a contact hole 9 where the silicon carbide substrate 1 and the metal in the contact electrode material directly contact each other to a mixed layer 12 which includes both of carbide and nitride.
    • 要解决的问题:形成欧姆电极,其可以通过抑制碳的释放来确保电极的粘附,同时确保欧姆性能。解决方案:碳化硅半导体元件制造方法包括在碳化硅衬底上形成接触电极的工艺 在形成接触电极的过程中,使用易于生成碳化物并且容易产生氮化物的金属(包括钛,锆和铪中的任何一种或多种的纯金属或合金)用作接触电极的电极主要材料 并且在主要由氮气组成的气氛中进行热退火,从而在热退火中将接触电极的电极材料中的金属在接触孔9的区域中转化,其中碳化硅衬底1和接触电极中的金属 材料直接彼此接触到包括碳化物和氮化物两者的混合层12。
    • 7. 发明专利
    • High-voltage semiconductor device
    • 高断电压半导体器件
    • JP2013211460A
    • 2013-10-10
    • JP2012081736
    • 2012-03-30
    • National Institute Of Advanced Industrial & Technology独立行政法人産業技術総合研究所Fuji Electric Co Ltd富士電機株式会社
    • IWAMURO NORIYUKIHARADA SHINSUKEHOSHI YASUYUKIHARADA YUICHI
    • H01L29/78H01L21/28H01L21/336H01L29/12H01L29/47H01L29/872
    • H01L29/1095H01L21/046H01L21/049H01L29/045H01L29/0619H01L29/0661H01L29/0878H01L29/1608H01L29/6606H01L29/66068H01L29/7811H01L29/868H01L29/872
    • PROBLEM TO BE SOLVED: To improve a breakdown strength with low on-resistance while a sufficient element breakdown voltage characteristic is held for a process variation at the time of ion implantation in a peripheral breakdown voltage structure, independent of crystal plane direction of a substrate.SOLUTION: A vertical high breakdown voltage semiconductor device includes a first conductive type semiconductor substrate (1), a semiconductor layer (2) which is formed on the semiconductor substrate (1) to be first conductivity type and has concentration lower than the semiconductor substrate (1), a second conductivity type semiconductor layer (3) of high concentration which is selectively formed on the surface of the semiconductor layer (2), a base layer (4) of second conductivity type and low concentration, formed on the semiconductor layer (2) and the second conductivity type semiconductor layer (3), and a first conductive type source region (5) which is selectively formed on a surface layer of the base layer (4). At an element peripheral part, a part of the second conductivity type semiconductor layer (3) is removed, and then, on the surface of the semiconductor layer (2) whose concentration is lower than the semiconductor substrate (1), a plurality of second conductivity type layers (11 and 12) of low concentration are formed. The second conductivity type layer (11) at the innermost periphery is arranged not to contact to the second conductivity type semiconductor layer (3) and the base layer (4).
    • 要解决的问题:为了在外围击穿电压结构中的离子注入时保持足够的元件击穿电压特性,而与基板的晶面方向无关,提高具有低导通电阻的击穿强度。 解决方案:垂直高击穿电压半导体器件包括第一导电类型半导体衬底(1),半导体衬底(1)上形成为第一导电类型并具有比半导体衬底低的浓度的半导体层(2) 1),在半导体层(2)的表面上选择性地形成有高浓度的第二导电型半导体层(3),形成在半导体层(2)上的第二导电型和低浓度的基极层(4) 2)和第二导电类型半导体层(3)以及选择性地形成在表面l上的第一导电型源极区域(5) 基层(4)。 在元件周边部分,去除第二导电类型半导体层(3)的一部分,然后在其半导体层(2)的表面上浓度低于半导体衬底(1)的多个第二 形成低浓度的导电型层(11和12)。 最外围的第二导电类型层(11)布置成不与第二导电类型半导体层(3)和基底层(4)接触。
    • 9. 发明专利
    • Semiconductor device
    • 半导体器件
    • JP2013232561A
    • 2013-11-14
    • JP2012104229
    • 2012-04-27
    • National Institute Of Advanced Industrial & Technology独立行政法人産業技術総合研究所Fuji Electric Co Ltd富士電機株式会社
    • HARADA SHINSUKEIWAMURO NORIYUKIHOSHI YASUYUKIHARADA YUICHI
    • H01L29/78H01L29/12
    • H01L29/1608H01L29/0873H01L29/0878H01L29/36H01L29/78H01L29/7802
    • PROBLEM TO BE SOLVED: To provide a semiconductor device which can improve insulation breakdown resistance of a gate insulation film and improve reliability of the gate insulation film.SOLUTION: A semiconductor device comprises: an n type SiC layer formed on a surface of an ntype SiC substrate; a plurality of p type regions selectively formed inside the n type SiC layer; a p type SiC layer formed across surfaces of the n type SiC layer and the p type regions; an n type region formed inside the p type SiC layer so as to connect to the n type SiC layer; and an ntype source region and a ptype contact region which are formed inside the p type SiC layer in contact with each other and away from the n type region. The n type region is formed such that a width Lof the n type region inside the p type SiC layer is within a range of 0.8 μm-3.0 μm and an impurity concentration of the n type region is within a range of 1.0×10cm-5.0×10cm. Accordingly, a large electric field is not applied to a gate oxide film thereby to improve breakdown resistance of a gate insulation film and improve reliability of the gate insulation film.
    • 要解决的问题:提供一种可以提高栅极绝缘膜的绝缘击穿电阻并提高栅极绝缘膜的可靠性的半导体器件。解决方案:一种半导体器件包括:形成在n型SiC表面上的n型SiC层 基质; 选择性地形成在n型SiC层内的多个p型区; 形成在n型SiC层和p型区域的表面上的p型SiC层; 形成在p型SiC层内的n型区域,以连接到n型SiC层; 以及形成在p型SiC层内部并且彼此接触并远离n型区域的n型源极区域和p型接触区域。 n型区域形成为使p型SiC层内的n型区域的宽度L在0.8μm〜3.0μm的范围内,n型区域的杂质浓度在1.0×10cm〜5.0的范围内 ×10厘米。 因此,不向栅极氧化膜施加大的电场,从而提高栅极绝缘膜的耐击穿性,提高栅极绝缘膜的可靠性。